Skip to main content
Log in

Numerical Simulation of GUE Two-Point Correlation and Cluster Functions

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Numerical simulations of the two-point eigenvalue correlation and cluster functions of the Gaussian unitary ensemble (GUE) are carried out directly from their definitions in terms of deltas functions. The simulations are compared with analytical results which follow from three analytical formulas for the two-point GUE cluster function: (i) Wigner’s exact formula in terms of Hermite polynomials, (ii) Brezin and Zee’s approximate formula which is valid for points with small enough separations and (iii) French, Mello and Pandey’s approximate formula which is valid on average for points with large enough separations. It is found that the oscillations present in formulas (i) and (ii) are reproduced by the numerical simulations if the width of the function used to represent the delta function is small enough and that the non-oscillating behaviour of formula (iii) is approached as the width is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Wishart, . Biometrika. 20A, 32 (1928)

    Article  Google Scholar 

  2. E.P. Wigner, in . Proceedings of the fourth canadian mathematical congress, Banff, 1957 (Univ. of Toronto Press, Toronto), pp 174–184, ed. by M.S. Macphail. Reprinted in [3]. (1959)

  3. C.E. Porter. Statistical theories of spectra: fluctuations (Academic Press, New York, 1965)

    Google Scholar 

  4. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, . Rev. Mod. Phys. 53, 385–479 (1981)

    Article  ADS  Google Scholar 

  5. G.E. Mitchell, A. Richter, H.A. Weidenmüller, . Rev. Mod. Phys. 82, 2845 (2010)

    Article  ADS  Google Scholar 

  6. H.A. Weidenmüller, G.E. Mitchell, . Rev. Mod. Phys. 81, 539 (2009)

    Article  ADS  Google Scholar 

  7. A.J. Sargeant, M.S. Hussein, A.N. Wilson, in . Nuclei and mesoscopic physics: Workshop on nuclei and mesoscopic physics; WNMP 2004, AIP Conf. Proc., 777, pp 46–54, ed. by V. Zelevinsky, (2005)

  8. M.S. Hussein, B.V. Carlson, A.K. Kerman, . Acta Phys. Pol. B. 47, 391 (2016)

    Article  ADS  Google Scholar 

  9. O. Bohigas, M.-J. Giannoni, in . Mathematical and computational methods in nuclear physics, Lecture notes in physics, 209 (Springer), pp 1–99, ed. by J.S. Dehesa, J.M.G. Gomez, A. Polls, (1984)

  10. O. Bohigas, in . Les houches 1989 session LII chaos and quantum physics (North Holland, Amsteram), pp 87–199, ed. by M.-J. Giannoni, A. Voros, J. Zinn-Justin, (1991)

  11. M.A. Stephanov, J.J.M. Verbaarschot, T. Wettig, in . Wiley encyclopedia of electrical and electronics engineering (Wiley), ed. by J.G. Webster, (1999)

  12. C.W.J. Beenakker, . Nucl. Phys. B. 422, 515 (1994)

    Article  ADS  Google Scholar 

  13. M.S. Hussein, J.G.G.S. Ramos, in Universal fluctuations and coherence lengths in chaotic mesoscopic systems and nuclei. Nuclei and mesoscopic physics 2017, AIP Conf. Proc., 1912, p 020007, ed. by P. Danielewicz, V. Zelevinsky, (2017)

  14. J. Ambjørn, Y.M. Makeenko, . Mod. Phys. Lett. A. 5, 1753 (1990)

    Article  ADS  Google Scholar 

  15. A. Edelman, B.D. Sutton, Y. Wang, in Random matrix theory, numerical computation and applications. Modern aspects of random matrix theory, proceedings of symposia in applied mathematics (American Mathematical Society), 72, pp 53–82, ed. by V.H. Vu, (2014)

  16. B. Hayes, . Am. Sci. 91, 296 (2003)

    Article  Google Scholar 

  17. P.J. Forrester, A. Mays, . Proc. R. Soc. Lond. A. 471, 20150436 (2015)

    ADS  Google Scholar 

  18. M. Wolf, . Rep. Prog. Phys. 83, 036001 (2020)

    Article  ADS  Google Scholar 

  19. G. Ergün, in . Encyclopedia of complexity and systems science (Springer, N.Y.), pp 7505–7520, ed. by R.A. Meyers, (2009)

  20. F.J. Dyson, . J. Math. Phys. 3, 166 (1962)

    Article  ADS  Google Scholar 

  21. F.J. Dyson, M.L. Mehta, . J. Math. Phys. 4, 701 (1963)

    Article  ADS  Google Scholar 

  22. G. Livan, M. Novaes, P. Vivo. Introduction to random matrices: theory and practice (Springer, Berlin, 2018)

    Book  Google Scholar 

  23. E.P. Wigner, Distribution laws for the roots of a random Hermitean matrix. Published in [3]. (1962)

  24. M.L. Mehta, F.J. Dyson, . J. Math. Phys. 4, 713 (1963)

    Article  ADS  Google Scholar 

  25. B.V. Bronk, . J. Math. Phys. 5, 215 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  26. M.L. Mehta. Random matrices and the statistical theory of energy levels (Academic Press, New York, 1967)

    MATH  Google Scholar 

  27. J.M.G. Gómez, R.A. Molina, A. Relaño, J. Retamosa, . Phys. Rev. E. 66, 036209 (2002)

    Article  ADS  Google Scholar 

  28. A.J. Sargeant, M.S. Hussein, M.P. Pato, M. Ueda, . Phys. Rev. C. 61, 011302 (2000)

    Article  ADS  Google Scholar 

  29. H. Feshbach. Theoretical nuclear physics: Nuclear reactions (Wiley, New York, 1992)

    Google Scholar 

  30. H. Pishro-Nik, Introduction to probability, statistics, and random processes, (Kappa Research LLC) . Available at https://www.probabilitycourse.com (2014)

  31. Y.V. Fyodorov, in Recent perspectives in random matrix theory and number theory, London mathematical society lecture note series (Cambridge University Press), pp 31–78, ed. by F. Mezzadri, N.C. Snaith, (2005)

  32. E. Brézin, A. Zee, . Nucl. Phys. B. 402, 613 (1993)

    Article  ADS  Google Scholar 

  33. E. Brézin, . Physica A. 221, 372 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  34. J.B. French, P.A. Mello, A. Pandey, . Ann. Phys. 113, 277 (1978)

    Article  ADS  Google Scholar 

  35. A. Pandey, . Ann. Phys. 134, 110 (1981)

    Article  ADS  Google Scholar 

  36. A.M. Khorunzhy, B.A. Khoruzhenko, L.A. Pastur, . J. Math. Phys. 37, 5033 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  37. A.M.S. Macêdo, . Phys. Rev. E. 55, 1457 (1997)

    Article  ADS  Google Scholar 

  38. Y. He, A. Knowles, . Probab. Theory Relat. Fields. 177, 147 (2020)

    Article  Google Scholar 

  39. T.S. Kobayakawa, Y. Hatsugai, M. Kohmoto, A. Zee, . Phys. Rev. E. 51, 5365 (1995)

    Article  ADS  Google Scholar 

  40. A.C. Bertuola, J.X. de Carvalho, M.S. Hussein, M.P. Pato, A.J. Sargeant, . Phys. Rev. E. 71, 036117 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  41. T. Guhr, A. Müller-Groeling, H.A. Weidenmüller, . Phys. Rep. 299, 189 (1998)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge happy collaborations with Mahir Saleh Hussein and Mauricio Porto Pato which involved random matrices in nuclear physics and were the precursor to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam James Sargeant.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix we offer some considerations on the coding of the ensemble average in (14) for the two-point correlation function. Let us denote the ith eigenvalue of the kth realisation of the ensemble by Eik and define \(N\times k_{\max \limits }\) matrices X and Y whose elements are δ(ExEik) and δ(EyEik) respectively. Then the two-point correlation function R of energies Ex and Ey may be conveniently coded in Octave or MATLAB by

$$ \begin{array}{@{}rcl@{}} &&\mathtt{D = X * Y^{\prime}} \end{array} $$
(A.1)
$$ \begin{array}{@{}rcl@{}} &&\mathtt{R = (sum(D(:)) - trace(D))/kmax} \end{array} $$
(A.2)

where the N × N matrix D is the outer product of X and Y' (the transpose of Y) and sum(D(:)) is the grand sum of its elements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargeant, A.J. Numerical Simulation of GUE Two-Point Correlation and Cluster Functions. Braz J Phys 51, 308–315 (2021). https://doi.org/10.1007/s13538-020-00802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00802-6

Keywords

Navigation