Skip to main content

Advertisement

Log in

Oil palm lignin under subcritical phenol conditions as precursor for carbon fibre production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Carbon fibre is as thin as a strand of human hair but is five times stronger than, twice stiffer and lighter than steel; thus, an ideal advanced material in aerospace and automotive industries. However, carbon fibre is 20 times more expensive than steel because of expensive precursors, polyacrylonitrile and pitch, that account for 51% of the total manufacturing cost. Therefore, an alternative precursor, with superior properties, is required. Although successful studies for lignin extraction in subcritical phenol have been reported, there are no studies on evaluation of the lignin fundamental properties related to its suitability as a precursor for carbon fibre. In this study, the extraction of lignin from biomass was conducted in a batch system under subcritical phenol conditions by focusing on its fundamental properties (average molecular weight and glass transition temperature). The effect of temperatures (260–300 °C), reaction times (1–30 min) and solids loading (6 and 10 g) on these properties was determined. The results indicated that lignin from biomass under subcritical phenol conditions fulfilled the requirement as a precursor for carbon fibre. The average molecular weight and glass transition temperature was in the range of 145.5–269.6 g/mol and 40.5–89.3 °C for lignin from empty fruit bunch. On the other hand, the average molecular weight and glass transition temperature of lignin from oil palm frond was 263.8–435.4 g/mol and 71.2–96.3 °C. The increase in temperature reduced the dielectric constant of the subcritical phenol and facilitated lignin depolymerisation. The reactive fragments and the active sites were capped by phenol to suppress the cross-linking reactions and hence the formation of heavier fragments. The minimal decrease in average molecular weight and glass transition temperature of lignin with solids loading supported the conclusion that repolymerisation of lignin likely did not occur under subcritical phenol conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dumanlı AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. J Mater Sci 47:4236–4250. https://doi.org/10.1007/s10853-011-6081-8

    Article  Google Scholar 

  2. Li X, Zhu X, Okuda K, Zhang Z, Ashida R, Yao H, Miura K (2017) Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction. New Carbon Mater 32:41–47. https://doi.org/10.1016/S1872-5805(17)60106-9

    Article  Google Scholar 

  3. Gindl-Altmutter W, Obersriebnig M, Veigel S, Liebner F (2015) Compatibility between cellulose and hydrophobic polymer provided by microfibrillated lignocellulose. ChemSusChem 8:87–91. https://doi.org/10.1002/cssc.201402742

    Article  Google Scholar 

  4. Awalludin MF, Sulaiman O, Hashim R, Nadhari WNAW (2015) An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renew Sust Energ Rev 50:1469–1484. https://doi.org/10.1016/j.rser.2015.05.085

    Article  Google Scholar 

  5. Mishra G, Saka S (2011) Kinetic behavior of liquefaction of Japanese beech in subcritical phenol. Bioresour Technol 102:10946–10950. https://doi.org/10.1016/j.biortech.2011.08.126

    Article  Google Scholar 

  6. Funaoka M (2013) Sequential transformation and utilization of natural network polymer “LIGNIN”. React Funct Polym 73:396–404. https://doi.org/10.1016/j.reactfunctpolym.2012.05.010

    Article  Google Scholar 

  7. Nonaka H, Funaoka M (2011) Decomposition characteristics of softwood lignophenol under hydrothermal conditions. Biomass Bioenergy 35:1607–1611. https://doi.org/10.1016/j.biombioe.2010.12.040

    Article  Google Scholar 

  8. Man X, Okuda K, Ohara S, Umetsu M, Takami S, Adschiri T (2005) Disassembly of organosolv lignin in supercritical fluid. J Jpn Inst Energy 84:486–490. https://doi.org/10.3775/jie.84.486

    Article  Google Scholar 

  9. Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130:713–728. https://doi.org/10.1002/app.39273

    Article  Google Scholar 

  10. Funaoka M, Matsubara M, Seki N, Fukatsu S (1995) Conversion of native lignin to a highly phenolic functional polymer and its separation from lignocellulosics. Biotechnol Bioeng 46:545–552. https://doi.org/10.1002/bit.260460607

    Article  Google Scholar 

  11. Abdullah SSS, Hassan MA, Shirai Y, Funaoka M, Shinano T, Idris A (2009) Effect of solvent pre-treatment on lignophenol production from oil palm empty fruit bunch fibers. J Oil Palm Res 21:700–709

    Google Scholar 

  12. Aoyagi M, Funaoka M (2010) Thermal responses of lignophenols. Trans Mater Res Soc Jpn 35:967–970. https://doi.org/10.14723/tmrsj.35.967

    Article  Google Scholar 

  13. Qian S, Dai X, Qi Y, Ren H (2015) Preparation and characterization of polyhydroxybutyrate-bamboo lignophenol biocomposite films. BioResources 10:3169–3180. https://doi.org/10.15376/biores.10.2.3169-3180

    Article  Google Scholar 

  14. Luo J, Genco J, Cole BJ, Fort RC (2011) Lignin recovered from the near-neutral hemicellulose extraction process as a precursor for carbon fiber. BioResources 6:4566–4593. https://doi.org/10.15376/biores.6.4.4566-4593

    Article  Google Scholar 

  15. Chatterjee S, Saito T (2015) Lignin-derived advanced carbon materials. ChemSusChem 8:3941–3958. https://doi.org/10.1002/cssc.201500692

    Article  Google Scholar 

  16. Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D (2008) Preparation of samples for compositional analysis. [Report No.: NREL/TP-510-42620]. Golden (CO): National Renewable Energy Laboratory (USA)

  17. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. Determination of extractives in biomass [Report o.: NREL/TP-510-42619]. Golden (CO): National Renewable Energy Laboratory (USA)

  18. TAPPI. (1993). Ash in wood, pulp, paper and paperboard: combustion at 900 °C (T413om-93). Technical Association of the Pulp and Paper Industry (TAPPI), Atlanta

  19. TAPPI (1999) Alpha-, beta-, and gamma- cellulose in pulp (T 203 om-93). Technical Association of the Pulp and Paper Industry (TAPPI), Atlanta

    Google Scholar 

  20. TAPPI (2002) Ash in wood, Pulp, paper and paperboard: combustion at 525 °C (T 211om-02). Technical Association of the Pulp and Paper Industry (TAPPI), Atlanta

    Google Scholar 

  21. TAPPI (2002) One percent sodium hydroxide solubility of wood and pulp (T 212 om-02). Technical Association of the Pulp and Paper Industry (TAPPI), Atlanta

    Google Scholar 

  22. TAPPI (2006) Acid-insoluble lignin in wood and pulp (T 222 om-02). Technical Association of the Pulp and Paper Industry (TAPPI), Atlanta

    Google Scholar 

  23. TAPPI (2007) Preparation of wood for chemical analysis (T 264 cm-97). Technical Association of the Pulp and Paper Industry (TAPPI), Atlanta

    Google Scholar 

  24. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of structural carbohydrates and lignin in biomass. [Report No.: NREL/TP-510-42621]. Golden (CO): National Renewable Energy Laboratory (USA)

  25. Braz CEM, Crnkovic PCGM (2014) Physical-chemical characterization of biomass samples for application in pyrolysis process. Chem Eng Trans 37:523–528. https://doi.org/10.3303/CET1437088

    Article  Google Scholar 

  26. Tan JP, Jahim JM, Harun S, Wu TY, Mumtaz T (2016) Utilization of oil palm fronds as a sustainable carbon source in biorefineries. Int J Hydrog Energy 41:4896–4906. https://doi.org/10.1016/j.ijhydene.2015.08.034

    Article  Google Scholar 

  27. Medina JDC, Woiciechowski AL, Filho AZ, Brar SK, Magalhães Júnior AI, Soccol CR (2018) Energetic and economic analysis of ethanol, xylitol and lignin production using oil palm empty fruit bunches from a Brazilian factory. J Clean Prod 195:44–55. https://doi.org/10.1016/j.jclepro.2018.05.189

    Article  Google Scholar 

  28. Wunna K, Nakasaki K, Auresenia JL, Abella LC, Gaspillo PAD (2017) Effect of alkali pretreatment on removal of lignin from sugarcane bagasse. Chem Eng Trans 56:1831–1836. https://doi.org/10.3303/CET1756306

    Article  Google Scholar 

  29. Qu W, Liu J, Xue Y, Wang X, Bai X (2018) Potential of producing carbon fiber from biorefinery corn stover lignin with high ash content. J Appl Polym Sci 135:1–11. https://doi.org/10.1002/app.45736

    Article  Google Scholar 

  30. Loh SK (2017) The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers Manag 141:285–298. https://doi.org/10.1016/j.enconman.2016.08.081

    Article  Google Scholar 

  31. Shahbaz M, Yusup S, Naz MY, Sulaiman SA, Inayat A, Partama A (2017) Fluidization of palm kernel shell, palm oil fronds, and empty fruit bunches in a swirling fluidized bed gasifier. Part Sci Technol 35:150–157. https://doi.org/10.1080/02726351.2016.1139021

    Article  Google Scholar 

  32. Rozhan AN, Hairin ALN, Salleh HM, Purwanto H (2019) Mechanism of carbon deposition within char derived from oil palm empty fruit bunch. AIP Conf Proc 2068:020009. https://doi.org/10.1063/1.5089308

    Article  Google Scholar 

  33. Baker FS, Griffith WL, Compere AL (2005) Low-cost carbon fiber. http://roussev.net/sdhash/tutorial-data/files/853.pdf.

  34. Marcus Y (2018) Extraction by subcritical and supercritical water, methanol, ethanol and their mixtures. Separations 5:4. https://doi.org/10.3390/separations5010004

    Article  Google Scholar 

  35. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150. https://doi.org/10.1016/j.jaap.2013.10.013

    Article  Google Scholar 

  36. Monties B (1994) Chemical assessment of lignin biodegradation some qualitative and quantitative aspects. FEMS Microbiol Rev 13:277–283. https://doi.org/10.1111/j.1574-6976.1994.tb00048.x

    Article  Google Scholar 

  37. Zhao YY, Li XH, Wu SB, Li YM (2016) Temperature impact on the hydrothermal depolymerization of Cunninghamia lanceolata enzymatic/mild acidolysis lignin in subcritical water. BioResources 11:21–32. https://doi.org/10.15376/biores.11.1.21-32

    Article  Google Scholar 

  38. Saisu M, Sato T, Watanabe M, Adschiri T (2003) Conversion of lignin with supercritical water - phenol mixtures. Energy Fuel 17:922–928. https://doi.org/10.1021/ef0202844

    Article  Google Scholar 

  39. Sun R, Xiao B, Lawther JM (1998) Fractional and structural characterization of ball-milled and enzyme lignins from wheat straw. J Appl Polym Sci 68:1633–1641. https://doi.org/10.1002/(SICI)1097-4628(19980606)68:10<1633::AID-APP12>3.0.CO;2-Y

    Article  Google Scholar 

  40. Tolbert A, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ (2014) Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels Bioprod Biorefin 8:836–856. https://doi.org/10.1002/bbb.1500

    Article  Google Scholar 

  41. Singh SK, Nandeshwar K, Ekhe JD (2016) Thermochemical lignin depolymerization and conversion to aromatics in subcritical methanol: effects of catalytic conditions. New J Chem 40:3677–3685. https://doi.org/10.1039/C5NJ02916C

    Article  Google Scholar 

  42. Horii S, Aoyagi M, Funaoka M (2013) Molecular response of lignophenols for high energy input II. Trans Mater Res Soc Jpn 38:333–336. https://doi.org/10.14723/tmrsj.38.333

    Article  Google Scholar 

  43. Sun Q, Khunsupat R, Akato K, Tao J, Labbé N, Gallego NC, Bozell JJ, Rials TG, Tuskan GA, Tschaplinski TJ, Naskar AK, Pu Y, Ragauskas AJ (2016) A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors. Green Chem 18:5015–5024. https://doi.org/10.1039/C6GC00977H

    Article  Google Scholar 

  44. Yong TLK, Yukihiko M (2013) Kinetic analysis of guaiacol conversion in sub-and supercritical water. Ind Eng Chem Res 52:9048–9059. https://doi.org/10.1021/ie4009748

    Article  Google Scholar 

  45. Tang PL, Hassan O, Yue CS, Abdul PM (2020) Lignin extraction from oil palm empty fruit bunch fiber (OPEFBF) via different alkaline treatments. Biomass Convers Biorefin 10:125–138. https://doi.org/10.1007/s13399-019-00413-5

    Article  Google Scholar 

  46. Mohamad N, Yusof NNM, Yong TLK (2017) Furfural production under subcritical alcohol conditions: effect of reaction temperature, time, and types of alcohol. J Jpn Inst Energy 96:279–284. https://doi.org/10.3775/jie.96.279

    Article  Google Scholar 

  47. Takada M, Tanaka Y, Minami E, Saka S (2016) Comparative study of the topochemistry on delignification of Japanese beech (Fagus crenata) in subcritical phenol and subcritical water. Holzforschung 70:1047–1053. https://doi.org/10.1515/hf-2016-0033

    Article  Google Scholar 

  48. Belkheiri T, Mattsson C, Andersson SI, Olausson L, Åmand LE, Theliander H, Vamling L (2016) Effect of pH on Kraft lignin depolymerisation in subcritical water. Energy Fuel 30:4916–4924. https://doi.org/10.1021/acs.energyfuels.6b00462

    Article  Google Scholar 

  49. Lee SH, Ohkita T (2003) Rapid wood liquefaction by supercritical phenol. Wood Sci Technol 37:29–38. https://doi.org/10.1007/s00226-003-0167-7

    Article  Google Scholar 

  50. Okuda K, Umetsu M, Takami S, Adschiri T (2004) Disassembly of lignin and chemical recovery—rapid depolymerization of lignin without char formation in water–phenol mixtures. Fuel Process Technol 85:803–813. https://doi.org/10.1016/j.fuproc.2003.11.027

    Article  Google Scholar 

  51. Mattsson C, Andersson SI, Belkheiri T, Åmand LE, Olausson L, Vamling L, Theliander H (2016) Using 2D NMR to characterize the structure of the low and high molecular weight fractions of bio-oil obtained from LignoBoost™ Kraft lignin depolymerized in subcritical water. Biomass Bioenergy 95:364–377. https://doi.org/10.1016/j.biombioe.2016.09.004

    Article  Google Scholar 

  52. Rashid T, Kait CF, Murugesan T (2016) Effect of temperature on molecular weight distribution of pyridinium acetate treated Kraft lignin. Procedia Eng 148:1363–1368. https://doi.org/10.1016/j.proeng.2016.06.599

    Article  Google Scholar 

  53. Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40:2913–2920. https://doi.org/10.1016/S0008-6223(02)00248-8

    Article  Google Scholar 

  54. Kong L, Zhao Z, He Z, Yi S (2017) Effects of steaming treatment on crystallinity and glass transition temperature of Eucalyptuses grandis× E.urophylla. Results Phys 7:914–919. https://doi.org/10.1016/j.rinp.2017.02.017

    Article  Google Scholar 

  55. Horii S, Aoyagi M, Funaoka M (2011) Molecular response of lignophenols for high energy input. Trans Mater Res Soc Jpn 36:3–6. https://doi.org/10.14723/tmrsj.36.3

    Article  Google Scholar 

  56. Tao J, Hosseinaei O, Delbeck L, Kim P, Harper DP, Bozell JJ, Rials TG, Labbé N (2016) Effects of organosolv fractionation time on thermal and chemical properties of lignins. RSC Adv 6:79228–79235. https://doi.org/10.1039/C6RA16296G

    Article  Google Scholar 

  57. Ko JK, Kim Y, Ximenes E, Ladisch MR (2015) Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng 112:252–262. https://doi.org/10.1002/bit.25349

    Article  Google Scholar 

  58. Feldman D, Banu D, Campanelli J, Zhu H (2001) Blends of vinylic copolymer with plasticized lignin: thermal and mechanical properties. J Appl Polym Sci 81:861–874. https://doi.org/10.1002/app.1505

    Article  Google Scholar 

  59. Zhou X, Tang L, Zhang W, Lv C, Zheng F, Zhang RZ, Du G, Tang B, Liu X (2011) Enzymatic hydrolysis lignin derived from corn stover as an intrinstic binder for bio-composite manufacture: effect of fiber moisture content and pressing temperature on bards’ properties. BioResources 6:253–264. https://doi.org/10.15376/BIORES.6.1.253-264

    Article  Google Scholar 

  60. Saito T, Perkins JH, Vautard F, Meyer HM, Messman JM, Tolnai B, Naskar AK (2014) Methanol fractionation of softwood kraft lignin: impact on the lignin properties. ChemSusChem 7:221–228. https://doi.org/10.1002/cssc.201300509

    Article  Google Scholar 

Download references

Funding

This research has been made possible by the grant provided by the Malaysia Ministry of Higher Education through the Fundamental Research Grant Scheme (FRGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tau-Len Kelly Yong.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, K.A., Karunakaran, V., Abd-Talib, N. et al. Oil palm lignin under subcritical phenol conditions as precursor for carbon fibre production. Biomass Conv. Bioref. 12, 5505–5513 (2022). https://doi.org/10.1007/s13399-020-01051-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01051-y

Keywords

Navigation