Skip to main content

Advertisement

Log in

Variability and plant communities’ diversity of acidophilous dwarf-heath mountain tundra (the class Loiseleurio-Vaccinietea) in Romanian Carpathians

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The paper presents a comprehensive numerical analysis of vegetation within the class Loiseleurio-Vaccinietea Eggler ex Schubert 1960 in Southeastern Carpathians (Romanian Carpathians), specifically the cryophilous dwarf-shrub heathlands on windswept slopes and edges and acidophilous mesophilous dwarf-shrub communities in subalpine and alpine belts. Based on a large dataset of phytosociological relevés stored in the Romanian Grasslands Database (EU-RO-008), this contribution was focused on the variability of dwarf-shrub communities, their environmental preferences, and the main ecological factors shaping their floristic composition. All relevés were analyzed using hierarchical agglomerative clustering methods to identify the main vegetation groups. Direct and indirect ordination methods were used to identify the main gradients affecting the floristic composition of individual vegetation types. The numerical analysis revealed six well-defined communities, largely corresponding to associations described in syntaxonomical literature, according to their diagnostic species: Cetrario-Loiseleurietum procumbentis Br.-Bl. et al. 1939, Cetrario nivalis-Vaccinietum gaultherioidis (Hadač 1956) Hadač ex Šibík et al. 2007, Rhododendro myrtifolii-Vaccinietum Coldea et al. 1981, Campanulo abietinae-Juniperetum nanae Simon 1966, Campanulo abietinae-Vaccinietum myrtilli (Buia et al. 1962) Boşcaiu 1971, and Bruckenthalio-Juniperetum nanae (Horvat 1938) Coldea in Coldea et al. 2015. New syntaxa were identified at lower hierarchical levels (sub-associations) and new typifications were made. The floristic composition of target species-poor communities was mainly modelled by altitudinal range (temperature) and bedrock type. In Detrended Correspondence Analysis, the plant communities were arranged based on a gradient of altitude, from those occurring in the harshest environmental conditions, at highest elevations, with a floristic composition rich in heliophile species (alliance Loiseleurio-Vaccinion Br.-Bl. in Br.-Bl. et Jenny 1926) to communities distributed at lower elevations, on sites with higher mean annual temperatures and with a floristic composition rich in shade tolerating species (alliance Juniperion nanae Br.-Bl. in Br.-Bl. et al. 1939). Relevés of alliance Rhododendrion myrtifolii de Foucault ex Theurillat et Mucina in Mucina et al. 2016 were located in an intermediate position within studied communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexiu V (1998) Vegetaţia Masivului Iezer-Păpuşa. Studiu fitocenologic. Cultura, Piteşti

  • Beldie A (1967) Flora şi vegetaţia Munţilor Bucegi. Editura Academiei Române, Bucureşti

    Google Scholar 

  • Berg C, Ewald J, Hobohm C, Dengler J (2019) The whole and its parts: why and how to disentangle plant communities and synusiae in vegetation classification. Appl Veg Sci 23:127–135. https://doi.org/10.1111/avsc.12461

    Article  Google Scholar 

  • Borza A (1934) Studii fitosociologice in Munţii Retezatului. Buletinul Grădinii Botanice Cluj 14(1–2):1–84

    Google Scholar 

  • Borza A (1959) Flora şi vegetaţia Văii Sebeşului. Editura Academiei Române, Bucureşti

    Google Scholar 

  • Boşcaiu N (1971) Flora şi vegetaţia Munţilor Ţarcu, Godeanu şi Cernei. Editura Academiei Române, Bucureşti

    Google Scholar 

  • Bouxin G (2005) Ginkgo, a multivariate analysis package. J Veg Sci 16:355–359. https://doi.org/10.1111/j.1654-1103.2005.tb02374.x

    Article  Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde, 3rd edn. Springer Verlag, Wien

    Google Scholar 

  • Braun-Blanquet J, Jenny H (1926) Vegetations-Entwicklung und Bodenbildung in der alpinen Stufe der Zentralalpen (Klimaxgebiet des Caricion curvulae). Denkschr Schweiz Naturforsch Ges Zürich 63:183–349

    Google Scholar 

  • Braun-Blanquet J, Sissingh G, Vlieger J (1939) Klasse der Vaccinio-Piceetea. Prodromus der Pflanzengesellschaften Comité International du Prodrome Phytosociologique 6:1–123

    Google Scholar 

  • Buia A, Păun M, Pavel C (1962) Studiul geobotanic al pajiştilor. In: Buia A (ed) Pajiştile din Masivul Parîng şi îmbunătăţirea lor. Editura Agro-Silvică, Bucureşti

    Google Scholar 

  • Chifu T (2014) Cl. Loiseleurio-Vaccinietea. In: Chifu T (ed.), Irimia I Diversitatea fitosociologică a vegetaţiei României. III. Vegetaţia pădurilor şi tufişurilor. Editura Institutul European, Iaşi

  • Chytrý M, Otýpková Z (2003) Plot sizes used for phytosociological sampling of European vegetation. J Veg Sci 14:563–570. https://doi.org/10.1111/j.1654-1103.2003.tb02183.x

    Article  Google Scholar 

  • Ciocârlan V (2000) Flora ilustrată a României. Ceres, Bucureşti

    Google Scholar 

  • Coldea G (1990) Munţii Rodnei. Studiu geobotanic, Editura Academiei Române, Bucureşti

    Google Scholar 

  • Coldea G (1991) Prodrome des associations vegetales des Carpates du sud-est (Carpates Roumaines). Documents phytosociologiques 13:317–539

    Google Scholar 

  • Coldea G (2015) Classe Vaccinio-Piceetea. In: Coldea G (ed.), Indreica a, Oprea a (2015) les associations vegetales de Roumanie. Tome 3. Les associations forestiéres et arbustives. Presa Universitară Clujeană & Accent, Cluj-Napoca

  • Coldea G, Täuber F, Pînzaru G (1981) Asociaţii vegetale din rezervaţia naturală Pietrosul Mare. Stud Com Ocrot Nat Suceava 5:424–452

    Google Scholar 

  • Coldea G, Filipaş L, Stoica IA (2008) Contributions to Romanian vegetation studies (IV). Contrib Bot 43:45–52

    Google Scholar 

  • de Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90(12):3566–3574. https://doi.org/10.1890/08-1823.1

    Article  PubMed  Google Scholar 

  • Dengler J, Löbel S, Dolnik C (2009) Species constancy depends on plot size – a problem for vegetation classification and how it can be solved. J Veg Sci 20:754–766. https://doi.org/10.1111/j.1654-1103.2009.01073.x

    Article  Google Scholar 

  • Domin K (1933) Die Vegetationsverhältnisse des Buçegi in den rumänischen Südkarpathen. Veröff. Geobot. Inst. Rübel Zürich 10: 96–144. [Sep. p. 141–148]

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible assymmetrical approach. Ecol Monogr 67:345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Article  Google Scholar 

  • Eggler J (1952) Übersicht der höheren Vegetationseinheiten der Ostalepen. Mitt Naturwiss Ver Steiermark 81-82:28–41

    Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of Central Europe, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Euro+Med (2006 - ) Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity. http://ww2.bgbm.org/EuroPlusMed/

  • European Comission (1992) Habitats Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora. http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm

  • Fick S, Hijmans R (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Grabherr G (1993) Loiseleurio-Vaccinietea. In Grabherr G, Mucina L (eds). Die Pflanzengesellschaften Österreichs. Teil 2. Natürliche Waldfreie Vegetation, Jena

  • Horeanu C, Viţalariu G (1991) Noi contribuţii la cunoaşterea vegetaţiei din Muntii Călimani (I). Anuarul Muzeului Bucovinei. Ştiinţele Naturii 11:23–32

    Google Scholar 

  • Hurdu B-I, Escalante T, Pușcaș M, Novikoff A, Bartha L, Zimmermann NE (2016) Exploring the different facets of plant endemism in the south-eastern Carpathians: a manifold approach for the determination of biotic elements, centres and areas of endemism. Biol J Linn Soc 119:649–672. https://doi.org/10.1111/bij.12902

    Article  Google Scholar 

  • Illa E, Ninot JM, Anadon-Rosell A, Oliva F (2017) The role of abiotic and biotic factors in functional structure and processes of alpine subshrub communities. Folia Geobotanica 52:199–215. https://doi.org/10.1007/s12224-017-9296-x

    Article  Google Scholar 

  • Kliment J, Šibík J, Šibíková I, Jarolímek I, Dúbravcová Z, Uhlířová J (2010) High altitude vegetation of the Western Carpathians - a syntaxonomical review. Biologia 65(6):965–989. https://doi.org/10.2478/s11756-010-0109-4

    Article  Google Scholar 

  • Kliment J, Turis P, Janišová M (2016) Taxa of vascular plants endemic to the Carpathian Mts. Preslia 88:19–76

    Google Scholar 

  • Körner C (1989) The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia 81:379–391

    Article  Google Scholar 

  • Körner C, Neumayer M, Menendez-Riedl SP, Smeets-Schee A (1989) Functional morphology of mountain plants. Flora 182:353–383

    Article  Google Scholar 

  • Krajina V (1933) Die Pflanzengesellschaften des Mlynica-Tales in den Vysoké Tatry (Hohe Tatra). 2. Teil Beih Bot Centralbl 51:1–224

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lengyel A, Chytrý M, Tichý L (2011) Heterogeneity-constrained random resampling of phytosociological databases. J Veg Sci 22:75–183. https://doi.org/10.1111/j.1654-1103.2010.01225.x

    Article  Google Scholar 

  • Löffler J, Pape R (2020) Thermal niche predictors of alpine plant species. Ecology 101(1):e02891. https://doi.org/10.1002/ecy.2891. https://doi.org/10.1002/ecy.2891

  • Matteodo M, Wipf S, Stöckli V, Rixen C, Vittoz P (2013) Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ Res Lett 8:024043 (10pp). https://doi.org/10.1088/1748-9326/8/2/024043

    Article  Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606. https://doi.org/10.1111/j.1654-1103.2002.tb02087.x

    Article  Google Scholar 

  • Mihai G (1986) Cercetări asupra mlaştinilor turboase din Masivul Ceahlău. Studii şi Cercetări de Biologie, ser. Biol Veget 38(1):14–18

    Google Scholar 

  • Mihăilescu S (2001) Flora şi vegetaţia Masivului Piatra Craiului. Vergiliu, Bucureşti

    Google Scholar 

  • Mititelu D, Chifu T, Viţalariu G, Ştefan N, Horeanu C, Dăscălescu D (1986) Contribuţie la studiul vegetaţiei ierboase din Munţii Călimani. Analele Şti. Univ. "Al. I. Cuza" Iaşi, s. II, a. Biol. 32: 33–35

  • Mucina L, Bültmann H, Dierßen K, Theurillat J-P, Raus T, Čarni A, Šumberová K, Willner W, Dengler J, García RG, Chytrý M, Hájek M, Di Pietro R, Iakushenko D, Pallas J, Daniëls FJA, Bergmeier E, Santos Guerra A, Ermakov N, Valachovič M, Schaminée JHJ, Lysenko T, Didukh YP, Pignatti S, Rodwell JS, Capelo J, Weber HE, Solomeshch A, Dimopoulos P, Aguiar C, Hennekens SM, Tichý L (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci 19(Suppl. 1):3–264. https://doi.org/10.1111/avsc.12257

    Article  Google Scholar 

  • Pellissier L, Fournier B, Guisan A, Vittoz P (2010) Plant traits co-vary with altitude in grasslands and forests in the European Alps. Plant Ecol 211:351–365. https://doi.org/10.1007/s11258-010-9794-x

    Article  Google Scholar 

  • QGIS Development Team (2020) QGIS Geographic Information System. Open Source Geospatial Foundation Project. URL:http://www.qgis.osgeo.org/

  • R Core Development Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL:https://www.R-project.org/

  • Regele D, Grünebach M, Erschbamer B, Schönswetter P (2017) Do ploidy level, morphology, habitat and genetic relationships in Alpine Vaccinium uliginosum allow for the discrimination of two entities? Preslia 89:291–308. https://doi.org/10.23855/preslia.2017.291

    Article  Google Scholar 

  • Resmeriţă I (1978) La classe Vaccinio-Juniperetea Pass. et Hoffm. 1968 des montagnes de Maramureş (Roumanie). Documents Phytosociologiques 2:365–376

    Google Scholar 

  • Resmeriţă I (1979–1980) Vegetaţia clasei Vaccinio-Juniperetea Pass. et Hoffm. 1968 din Carpaţii României. Studii şi Comunicări, Muzeul de Ştiinţele Naturii Bacău 13:217–236

  • Rivas-Martinez S, Fernandez-Gonzales F, Loidi J (1999) Ckecklist of plant communities of Iberian Peninsula, Balearic and Canary Islands to suballiance level. Itinera geobotanica 13:353–451

    Google Scholar 

  • Rodwell JS, Schaminée JHJ, Mucina L, Pignatti S, Dring J, Moss D (2002) The diversity of European vegetation An overview of phytosociological alliances and their relationships to EUNIS habitats Wageningen NL Report EC-LNV no 2002/54. https://research.wur.nl/en/publications/the-diversity-of-european-vegetation-an-overview-of-phytosociolog. Accessed 15 January 2020

  • Roussakova V (2000) Végétation alpine et sous alpine supérieure de la montagne de Rila (Bulgarie). Braun-Blanquetia 25:3–132

    Google Scholar 

  • Sanda V, Ollerer K, Burescu P (2008) Fitocenozele din România. Sintaxonomie, structură, dinamică şi evoluţie. Ars Docendi, Bucureşti

  • Sekulová L, Hájek M (2009) Diversity of subalpine and alpine vegetation of the eastern part of the Nízke Tatry Mts in Slovakia: major types and environmental gradients. Biologia 64(5):908–918. https://doi.org/10.2478/s11756-009-0176-6

    Article  Google Scholar 

  • Šibík J (2018) Vybrané rastlinné spoločenstvá Babej hory nad hornou hranicou lesa. Selected plant communities occurring above the timberline of the Babia hora Mt. (northern Slovakia). Acta Carpatica Occidentalis 9:27–32

    Google Scholar 

  • Šibík J, Kliment J, Jarolímek I, Dúbravcová Z, Bělohlávkokvá R, Paclová L (2006) Syntaxonomy and nomenclature of the alpine heaths (the class Loiseleurio-Vaccinietea) in the Western Carpathians. Hacquetia 5(1):37–71

    Google Scholar 

  • Silbernagl L, Schönswetter P (2019) Genetically divergent cytotypes of Vaccinium uliginosum co-occurring in the central eastern Alps can be distinguished based on the morphology of their flowers. Preslia 91:143–159. https://doi.org/10.23855/preslia.2019.143

    Article  Google Scholar 

  • Simon T (1966) Beiträge zur kenntnis der vegetation des Bihar (Bihor)-Gebirges. Annales Univ. Scient. Budapest, VIII: 253–273

  • Soó R (1944) A Radnai Havasok Növényvilága. Die pflanzenwelt der Radnaer Alpen. In: Az Erdélyi Nemzeti Múzeum Növénytárának Kiadása, Kolozsvár, pp. 57–87

  • Svitková I, Šibík J (2012) An expert-based classification of high-altitude arctic-alpine vegetation of the class Carici rupestris-Kobresietea Ohba 1974: achievements and obstacles. Plant Biosystems 147(2):315–327. https://doi.org/10.1080/11263504.2012.736422

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination (version 5.0). Microcomputer power, Ithaca, New York

  • Vassilev K, Ruprecht E, Alexiu V, Becker T, Beldean M, Biță-Nicolae C, Csergő AM, Dzhovanova I, Filipova E, Frink JP, Gafta D, Georgieva M, Germany MS, Goia I, Gumus M, Hennekens SM, Janišová M, Knollová I, Koleva V, Kostadinova S, Kuzmanović N, Loos J, Mardari C, Michl T, Neblea MA, Nicoară RI, Novák P, Öllerer K, Onete M, Palpurina S, Paulini I, Pedashenko H, Pușcaș M, Roman A, Šibík J, Sîrbu C, Stancu DI, Sutcliffe LME, Szabó A, Tomescu C-V, Totev E, Tsvetanov B, Turtureanu PD, Vassileva P, Velev N, Dengler J (2018) The Romanian grassland database (RGD): historical background, current status and future perspectives. Phytocoenologia 48(1):91–100. https://doi.org/10.1127/phyto/2017/0229

    Article  Google Scholar 

  • Vonlanthen CM, Buhler A, Veit H, Kammer PM, Eugster W (2006) Alpine plant communities: a statistical assessment of their relation to microclimatological, pedological, geomorphological, and other factors. Phys Geogr 27:137–154. https://doi.org/10.2747/0272-3646.27.2.137

    Article  Google Scholar 

  • Walters R (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447. https://doi.org/10.1093/jxb/eri060

    Article  CAS  PubMed  Google Scholar 

  • Zupančič M (1992) Zur syntaxonomischen Problematik des Verbandes Bruckenthalion spiculifoliae HT. 1949 (nom. nud.) und der Assoziation Junipereto-Bruckenthalietum HT. 1938 (nom. nud.) auf der Balkan-Halbinsel. Feddes Repertorium 103(3–4):243–268

    Google Scholar 

Download references

Acknowledgments

The authors thank the two anonymous reviewers for their helpful comments and suggestions. K.V.’s work on the Romanian Grasslands Database was supported by the joint project of the Eurasian Dry Grassland Group (EDGG) and the European Vegetation Survey (EVS) within the International Association for Vegetation Science (IAVS). J.S.’s research was financially supported by the project VEGA 2/0119/19.

Availability of data and material (data transparency) – All data is stored in Romanian Grasslands Database (EU-RO-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Mardari.

Ethics declarations

Conflicts of interest/competing interests

Authors declare that they have no conflict of interest.

Ethics approval (include appropriate approvals or waivers)

Not applicable.

Consent to participate (include appropriate statements)

Not applicable.

Consent for publication (include appropriate statements)

Not applicable.

Code availability (software application or custom code)

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardari, C., Vassilev, K., Šibík, J. et al. Variability and plant communities’ diversity of acidophilous dwarf-heath mountain tundra (the class Loiseleurio-Vaccinietea) in Romanian Carpathians. Biologia 76, 1–22 (2021). https://doi.org/10.2478/s11756-020-00595-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-020-00595-8

Keywords

Navigation