Skip to main content

Advertisement

Log in

Resistance to pseudorabies virus by knockout of nectin1/2 in pig cells

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Pseudorabies virus (PRV) is a pig pathogen that causes substantial economic losses to the pig industry. Infection of host cells by PRV is mediated by the membrane proteins nectin1 and nectin2, which are presumed to be receptors for PRV infection. Here, we generated nectin1/2 knockout (KO) cells with the aim of establishing a PRV-resistant cell model. Nectin1 and 2 were ablated in PK15 cells by CRISPR/Cas9-mediated gene targeting. PRV infection in either nectin1 or nectin2 KO cells showed a significant reduction in viral growth compared with wild-type (WT) cells. We further simultaneously deleted nectin1 and nectin2 in PK15 cells and found that double KO cells showed no further increase in resistance to PRV compared with single gene-KO cells, despite being more resistant than WT. By investigating the cell entry steps of PRV infection, we found that nectin1 or/and nectin2 KO did not greatly affect virus attachment or internalization to cells but blocked cell-to-cell spread. Our results demonstrate that KO of either nectin1 or nectin2 confers PRV resistance to PK15 cells. This strategy could be applied to establish PRV-resistant pigs with nectin1/2 modifications to benefit the pig industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Müller T, Hahn EC, Tottewitz F, Kramer M, Klupp BG, Mettenleiter TC, Freuling C (2011) Pseudorabies virus in wild swine: a global perspective. Arch Virol 156(10):1691–1705. https://doi.org/10.1007/s00705-011-1080-2

    Article  CAS  PubMed  Google Scholar 

  2. Ai JW, Weng SS, Cheng Q, Cui P, Li YJ, Wu HL, Zhu YM, Xu B, Zhang WH (2018) Human endophthalmitis caused by pseudorabies virus infection, China, 2017. Emerg Infect Dis 24(6):1087–1090. https://doi.org/10.3201/eid2406.171612

    Article  PubMed Central  PubMed  Google Scholar 

  3. Henderson JP, Graham DA, Stewart D (1995) An outbreak of Aujeszky’s disease in sheep in Northern Ireland. Vet Rec 136(22):555–557. https://doi.org/10.1136/vr.136.22.555

    Article  CAS  PubMed  Google Scholar 

  4. Pedersen K, Turnage CT, Gaston WD, Arruda P, Alls SA, Gidlewski T (2018) Pseudorabies detected in hunting dogs in Alabama and Arkansas after close contact with feral swine (Sus scrofa). BMC Vet Res 14(1):388. https://doi.org/10.1186/s12917-018-1718-3

    Article  PubMed Central  PubMed  Google Scholar 

  5. Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69(3):462–500. https://doi.org/10.1128/MMBR.69.3.462-500.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sun Y, Luo Y, Wang CH, Yuan J, Li N, Song K, Qiu HJ (2016) Control of swine pseudorabies in China: opportunities and limitations. Vet Microbiol 183:119–124. https://doi.org/10.1016/j.vetmic.2015.12.008

    Article  PubMed  Google Scholar 

  7. Heldwein EE, Krummenacher C (2008) Entry of herpesviruses into mammalian cells. Cell Mol Life Sci 65(11):1653–1668. https://doi.org/10.1007/s00018-008-7570-z

    Article  CAS  PubMed  Google Scholar 

  8. Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG (1998) Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280(5369):1618–1620. https://doi.org/10.1126/science.280.5369.1618

    Article  CAS  PubMed  Google Scholar 

  9. Li A, Lu G, Qi J, Wu L, Tian K, Luo T, Shi Y, Yan J, Gao GF (2017) Structural basis of nectin-1 recognition by pseudorabies virus glycoprotein D. PLoS Pathog 13(5):e1006314. https://doi.org/10.1371/journal.ppat.1006314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Spear PG, Eisenberg RJ, Cohen GH (2000) Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275(1):1–8. https://doi.org/10.1006/viro.2000.0529

    Article  CAS  PubMed  Google Scholar 

  11. Warner MS, Geraghty RJ, Martinez WM, Montgomery RI, Whitbeck JC, Xu R, Eisenberg RJ, Cohen GH, Spear PG (1998) A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 246(1):179–189. https://doi.org/10.1006/viro.1998.9218

    Article  CAS  PubMed  Google Scholar 

  12. Kopp SJ, Banisadr G, Glajch K, Maurer UE, Grünewald K, Miller RJ, Osten P, Spear PG (2009) Infection of neurons and encephalitis after intracranial inoculation of herpes simplex virus requires the entry receptor nectin-1. Proc Natl Acad Sci USA 106(42):17916–17920. https://doi.org/10.1073/pnas.0908892106

    Article  PubMed  PubMed Central  Google Scholar 

  13. Taylor JM, Lin E, Susmarski N, Yoon M, Zago A, Ware CF, Pfeffer K, Miyoshi J, Takai Y, Spear PG (2007) Alternative entry receptors for herpes simplex virus and their roles in disease. Cell Host Microbe 2(1):19–28. https://doi.org/10.1016/j.chom.2007.06.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Petermann P, Rahn E, Their K, Hsu MJ, Rixon FJ, Kopp SJ, Knebel-Mörsdorf D (2015) Role of nectin-1 and herpesvirus entry mediator as cellular receptors for herpes simplex virus 1 on primary murine dermal fibroblasts. J Virol 89(18):9407–9416. https://doi.org/10.1128/JVI.01415-15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Petermann P, Their K, Rahn E, Rixon FJ, Bloch W, Özcelik S, Krummenacher C, Barron MJ, Dixon MJ, Scheu S, Pfeffer K, Knebel-Mörsdorf D (2015) Entry mechanisms of herpes simplex virus 1 into murine epidermis: involvement of nectin-1 and herpesvirus entry mediator as cellular receptors. J Virol 89(1):262–274. https://doi.org/10.1128/JVI.02917-14

    Article  CAS  PubMed  Google Scholar 

  16. Karaba AH, Kopp SJ, Longnecker R (2011) Herpesvirus entry mediator and nectin-1 mediate herpes simplex virus 1 infection of the murine cornea. J Virol 85(19):10041–10047. https://doi.org/10.1128/JVI.05445-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Milne RS, Connolly SA, Krummenacher C, Eisenberg RJ, Cohen GH (2001) Porcine HveC, a member of the highly conserved HveC/nectin 1 family, is a functional alphaherpesvirus receptor. Virology 281(2):315–328. https://doi.org/10.1006/viro.2000.0798

    Article  CAS  PubMed  Google Scholar 

  18. Ono E, Amagai K, Taharaguchi S, Tomioka Y, Yoshino S, Watanabe Y, Cherel P, Houdebine LM, Adam M, Eloit M, Inobe M, Uede T (2004) Transgenic mice expressing a soluble form of porcine nectin-1/herpesvirus entry mediator C as a model for pseudorabies-resistant livestock. Proc Natl Acad Sci USA 101(46):16150–16155. https://doi.org/10.1073/pnas.0405816101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ono E, Amagai K, Yoshino S, Taharaguchi S, Inobe M, Uede T (2004) Resistance to pseudorabies virus infection in transformed cell lines expressing a soluble form of porcine herpesvirus entry mediator C. J Gen Virol 85(Pt 1):173–178. https://doi.org/10.1099/vir.0.19481-0

    Article  CAS  PubMed  Google Scholar 

  20. Holla P, Ahmad I, Ahmed Z, Jameel S (2015) Hepatitis E virus enters liver cells through a dynamin-2, clathrin and membrane cholesterol-dependent pathway. Traffic 16(4):398–416. https://doi.org/10.1111/tra.12260

    Article  CAS  PubMed  Google Scholar 

  21. Prather RS, Rowland RR, Ewen C, Trible B, Kerrigan M, Bawa B, Teson JM, Mao J, Lee K, Samuel MS, Whitworth KM, Murphy CN, Egen T, Green JA (2013) An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus. J Virol 87(17):9538–9546. https://doi.org/10.1128/JVI.00177-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Whitworth KM, Rowland RRR, Petrovan V, Sheahan M, Cino-Ozuna AG, Fang Y, Hesse R, Mileham A, Samuel MS, Wells KD, Prather RS (2019) Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res 28(1):21–32. https://doi.org/10.1007/s11248-018-0100-3

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Wu Z, Yang H (2019) Aminopeptidase N knockout pigs are not resistant to porcine epidemic diarrhea virus infection. Virol Sin 34(5):592–595. https://doi.org/10.1007/s12250-019-00127-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Cocchi F, Menotti L, Dubreuil P, Lopez M, Campadelli-Fiume G (2000) Cell-to-cell spread of wild-type herpes simplex virus type 1, but not of syncytial strains, is mediated by the immunoglobulin-like receptors that mediate virion entry, nectin1 (PRR1/HveC/HIgR) and nectin2 (PRR2/HveB). J Virol 74(8):3909–3917. https://doi.org/10.1128/jvi.74.8.3909-3917.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Barron MJ, Brookes SJ, Draper CE, Garrod D, Kirkham J, Shore RC, Dixon MJ (2008) The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice. Hum Mol Genet 17(22):3509–3520. https://doi.org/10.1093/hmg/ddn243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Inagaki M, Irie K, Ishizaki H, Tanaka-Okamoto M, Morimoto K, Inoue E, Ohtsuka T, Miyoshi J, Takai Y (2005) Roles of cell-adhesion molecules nectin 1 and nectin 3 in ciliary body development. Development 132(7):1525–1537. https://doi.org/10.1242/dev.01697

    Article  CAS  PubMed  Google Scholar 

  27. Mueller S, Rosenquist TA, Takai Y, Bronson RA, Wimmer E (2003) Loss of nectin-2 at Sertoli-spermatid junctions leads to male infertility and correlates with severe spermatozoan head and midpiece malformation, impaired binding to the zona pellucida, and oocyte penetration. Biol Reprod 69(4):1330–1340. https://doi.org/10.1095/biolreprod.102.014670

    Article  CAS  PubMed  Google Scholar 

  28. Struyf F, Martinez WM, Spear PG (2002) Mutations in the N-terminal domains of nectin-1 and nectin-2 reveal differences in requirements for entry of various alphaherpesviruses and for nectin-nectin interactions. J Virol 76(24):12940–12950. https://doi.org/10.1128/jvi.76.24.12940-12950.2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Natural Science Foundation of China (31772555).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenfang Wu or Huaqiang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This research did not contain studies involving human participants or animals by any of the authors.

Additional information

Handling Editor: Graciela Andrei.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Li, Z., Song, C. et al. Resistance to pseudorabies virus by knockout of nectin1/2 in pig cells. Arch Virol 165, 2837–2846 (2020). https://doi.org/10.1007/s00705-020-04833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04833-x

Navigation