Skip to main content

Advertisement

Log in

Theoretical Implementation and Experimental Verification of Zero-Power Force Control Mechanism

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Earthquake disasters are inevitable, and in recent years, major earthquakes have caused great losses of life and property. To prevent such losses, structures must have sufficient earthquake resistance to preserve the lives of the occupants. Structural control can improve the shock resistance of structures, the actuator is the key issue of the control system. A new prototype of actuator, a neutral equilibrium mechanism (NEM), is proposed in this study. It automatically recovers the energy of the stiffened component of structure. The internal force and energy of the stiffened component can be fully balanced under ideal conditions, namely, no friction force and precise control by this proposed NEM. A NEM can operate with a small amount of energy, requiring only a miniature servo actuator. A prototype of a NEM is verified in experiment. (1) The experimental components of the basic machine test include the following: body friction of the NEM, connecting rod friction, main spring elastic constant, balance spring elastic constant and zero correction. (2) Performance verification of the NEM: The experimental method verifies that the body and the connecting rod have little friction and find the elastic constants of the main spring and balance spring, and the value of zeroing calibration. (3) Efficiency validation of a NEM displays that the little unbalanced force can be provided by a NEM to balance large force, generated by the control mechanism. The magnification factor of this proposed NEM is more than 200. Test results demonstrate that a NEM can achieve a large energy-saving effect without being time-consuming, so the power demand of a NEM can be greatly reduced when applied to structural control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Robert, L.C.; Willian, R.S.; Gary, P.G.: Adaptive Structures Dynamics and Control. Wiley, Hoboken (1998)

    Google Scholar 

  2. Iwata, S.; Iemura,H.; Honda, A.; Sakai, K.; Fukushima, T.: Tugiyama, K.: Hybrid earthquake loading test (pseudo-dynamic test) of bi-directional base isolation bearing for a large pedestrian bridge. In: 12th World Conference on Earthquake Engineering. Paper No. 1738 (2000)

  3. Jangid, R.S.: Optimum lead–rubber isolation bearings for near-fault motions. Eng. Struct. 29(10), 2503–2513 (2007). https://doi.org/10.1016/j.engstruct.2006.12.010

    Article  Google Scholar 

  4. Salic, R.B.; Garevski, M.A.; Milutinovic, Z.V.: Response of lead-rubber bearing isolated structure. In: 14th World Conference on Earthquake Engineering (2008)

  5. Petti, L.; Giannattasio, G.; De Iuliis, M.; Palazzo, B.: Small scale experimental testing to verify the effectiveness of the base isolation and tuned mass dampers combined control strategy. Smart Struct. Syst. 6(1), 57–72 (2010). https://doi.org/10.12989/sss.2010.6.1.057

    Article  Google Scholar 

  6. Bridget Cunningham, B.: Using Lead Rubber Bearings in Base Isolation Systems. https://www.comsol.com/blogs/using-lead-rubber-bearings-in-base-isolation-systems/ (2015)

  7. Nakagawa, K.; Shimazaki, D.; Yoshida, S.; Okada, K.: Application of seismic isolation systems in japanese high-rise buildings. CTBUH J. 2015(2), 36–40 (2015)

    Google Scholar 

  8. Shimazaki, D.; Nakagawa, K.: Seismic isolation system incorporating with rc core walls and precast concrete perimeter frames. Int. J. High-Rise Build. 4(3), 181–189 (2015)

    Google Scholar 

  9. Chung, L.L.; Lin, R.C.; Soong, T.T.; Reinhorn, A.M.: Experiments on active control for MDOF seismic structures. J. Eng. Mech. ASCE 115(8), 1609–1627 (1989). https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1609)

    Article  Google Scholar 

  10. Hiemenz, G.J.; Choi, Y.T.; Wereley, N.M.: Seismic control of civil structures utilizing semi–active MR braces. Comput.-Aided Civ. Infrastruct. Eng. 18(1), 31–44 (2003). https://doi.org/10.1111/1467-8667.t01-1-00297

    Article  Google Scholar 

  11. Fisco, N.R.; Adeli, H.: Smart structures: part I—active and semi-active control. Sci. Iran. 18(3A), 275–284 (2011). https://doi.org/10.1016/j.scient.2011.05.034

    Article  Google Scholar 

  12. Liu, K.; Chen, L.X.; Cai, G.P.: Active control of a nonlinear and hysteretic building structure with time delay. Struct. Eng. Mech. 40(3), 431–451 (2011). https://doi.org/10.12989/sem.2011.40.3.431

    Article  Google Scholar 

  13. Zeng, X.; Peng, Z.; Mo, L.; Su, G. Y.: Active control based on prediction of structural vibration feedback. In: 2014 Fifth International Conference on Intelligent Systems Design and Engineering Applications (2014). https://doi.org/10.1109/ISDEA.2014.35

  14. Yu, W.; Thenozhi, S.: Active Structural Control with Stable Fuzzy PID Techniques. Springer Briefs in Applied Sciences and Technology. Springer (2016). https://doi.org/10.1007/978-3-319-28025-7

  15. Symans, M.D.; Constantinou, M.C.: Seismic testing of a building structure with a semi-active fluid damper control system. Earthq. Eng. Struct. Dyn. 26(7), 759–777 (1997). https://doi.org/10.1002/(SICI)1096-9845(199707)26:7<759:AID-EQE675>3.0.CO;2-E

    Article  Google Scholar 

  16. Kurata, N.; Kobori, T.; Takahashi, M.; Nowa, N.; Midorikawa, H.: Actual seismic response controlled building with semi-active damper system. Earthq. Eng. Struct. Dyn. 28(8), 1427–1447 (1999). https://doi.org/10.1002/(SICI)1096-9845(199911)28:11<1427:AID-EQE876>3.0.CO;2-#

    Article  Google Scholar 

  17. Gattulli, V.; Lepidi, M.; Potenza, F: Seismic protection of frame structures via semi-active control: modeling and implementation issues. Earthq. Eng. Eng. Vib. 8(4), 627–645 (2009). https://doi.org/10.1007/s11803-009-9113-5

    Article  Google Scholar 

  18. Palacios-Quiñonero, F.; Rubió-Massegú, J.J.; Rossell, M.; Karimi, H.R.: Semi-active-passive structural vibration control strategy for adjacent structures under seismic excitation. J. Franklin Inst. 349(10), 3003–3026 (2012). https://doi.org/10.1016/j.jfranklin.2012.09.005

    Article  MATH  Google Scholar 

  19. Pourzeynali, S.; Jooei, P.: Semi-active control of building structures using variable stiffness device and fuzzy logic. Int. J. Eng. Trans. A 26(10), 1169–1182 (2013). https://doi.org/10.5829/idosi.ije.2013.26.10a.07

    Article  Google Scholar 

  20. Caterino, N.; Spizzuoco, M.; Londoño, J.; Occhiuzzi, A.: Experimental issues in testing a semi-active technique to control earthquake induced vibration. Model. Simul. Eng. 2014, 25 (2014). https://doi.org/10.1155/2014/535434

    Article  Google Scholar 

  21. Hiramoto, K.; Matsuoka, T.; Sunakoda, K.: Simultaneous optimal design of the structural model for the semi-active control design and the model-based semi-active control. Struct. Control Health Monit. 21(4), 522–541 (2014). https://doi.org/10.1002/stc.1581

    Article  Google Scholar 

  22. Lu, L.Y.; Lin, T.K.; Jheng, R.J.; Wu, H.H.: Theoretical and experimental investigation of position-controlled semi-active friction damper for seismic structures. J. Sound Vib. 412, 184–206 (2018). https://doi.org/10.1016/j.jsv.2017.09.029

    Article  Google Scholar 

  23. Tamura, G.; Taniguchi, M.; Fujita, K.; Tsuji, M.; Takewaki, I.: Optimal damper placement in hybrid control system of multiple isolation and building connection. Int. J. Earthq. Impact Eng. 2(1), 67–87 (2017). https://doi.org/10.1504/IJEIE.2017.083718

    Article  Google Scholar 

  24. Hu, Y.; He, E.: Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper. J. Sound Vib. 410, 447–472 (2017). https://doi.org/10.1016/j.jsv.2017.08.050

    Article  Google Scholar 

  25. Hayashi, K.; Fujita, K.; Tsuji, M.; Takewaki, I.: A simple response evaluation method for base-isolation building-connection hybrid structural system under long-period and long-duration ground motion. Front. Built Environ. 4(2), 1–14 (2018). https://doi.org/10.3389/fbuil.2018.00002

    Article  Google Scholar 

  26. Levitas, V.K.; Roy, A.M.: Multiple phase field theory for temperature- and stress-induced phase transformations. Phys. Rev. B. 91(174109), 7 (2015). https://doi.org/10.1103/PhysRevB.91.174109

    Article  Google Scholar 

  27. Levitas, V.K.; Roy, A.M.: Multiple phase field theory for temperature-induced phase transformations: formulation and application to interfacial phases. Acta Mater. 105, 244–257 (2016). https://doi.org/10.1016/j.actamat.2015.12.013

    Article  Google Scholar 

  28. Saaed, T.E.; Nikolakopoulos, G.; Jonasson, J.E.; Hedlund, H.: A state-of-the-art review of structural control systems. J. Vib. Control 21(5), 919–937 (2013). https://doi.org/10.1177/1077546313478294

    Article  Google Scholar 

  29. Casciati, F.; Rodellar, J.; Yildirim, U.: Active and semi-active control of structure-theory and applications: a review of recent advances. Journal of Intelligent Material Systems and Structures. 23(11), 1181–1195. https://doi.org/10.1177/1045389X12445029

    Article  Google Scholar 

  30. Lu, L.Y.: Seismic test of modal control with direct output feedback for building structures. Struct. Eng. Mech. 12(6), 633–656 (2001). https://doi.org/10.12989/sem.2001.12.6.633

    Article  Google Scholar 

  31. Sung, W.P.; Shih, M.H: The shock absorption efficiency of the newly developed neutral equilibrium mechanism in building. Under reviewing.

  32. Sung, W.P.; Shih, M.H.; Go, C.G.: Neutral equilibrium mechanism for structural control. In: 13th World Conference on Earthquake Engineering. Paper No. 3236 (2004)

Download references

Acknowledgements

The authors would like to acknowledge the support of Taiwan Ministry of Science and Technology through Grant Nos. MOST-107-2221-M-167-001 and MOST-107-2119-M-260-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Pei Sung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shih, MH., Sung, WP. Theoretical Implementation and Experimental Verification of Zero-Power Force Control Mechanism. Arab J Sci Eng 46, 4421–4437 (2021). https://doi.org/10.1007/s13369-020-04962-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04962-0

Keywords

Navigation