Skip to main content
Log in

Kinetic EPR-Studies of the Anti-Peroxyl Radical Reactivities with Various Metallochelates of 3,5-Di-Iso-Propylsalicyalte and Salicylidene Schiff Base

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Copper(II)-, Fe(III)-, Zn(II)-, and Mn(II)-3,5-di-iso-propylsalicylate (3,5-DIPS) chelates and Cu(II)2(acetyl-3,5-DIPS)4, and 3,5-DIPS, salicylidene Schiff base chelates Mn(III), Co(II), Ni(II), were kinetically examined as antioxidants in the scavenging of tert-butyl peroxyl radical (\(tert - {\text{butylOO}}^{ \bullet }\)) in non-polar and polar aprotic solvents. Using kinetic EPR method absolute rate constants and corresponding Arrhenius parameters were determined for reactions of \(tert - {\text{butylOO}}^{ \bullet }\) with these chelates in the temperature range from − 63 to − 11 °C. It was established that the order of anti-\(tert - {\text{butylOO}}^{ \bullet }\) reactivity is: Mn(II)(3,5-DIPS)2 >> Cu(II)2(3,5-DIPS)4 > Fe(III)(3,5-DIPS)3 > Zn(II)(3,5-DIPS)2 >> Cu(II)2(acetyl-3,5-DIPS)4 and 3,5-DIPS acid. Mn(II)(3,5-DIPS)2 caused the most rapid removal rate for \(tert - {\text{butylOO}}^{ \bullet }\) as a result of the oxidation of Mn(II) to Mn(III) by \(tert - {\text{butylOO}}^{ \bullet }\). The reaction of \(tert - {\text{butylOO}}^{ \bullet }\) with Cu(II)2(3,5-DIPS)4, Zn(II)(3,5-DIPS)2 and Fe(III)(3,5-DIPS)3 is due only to hydrogen atom abstraction from the ligand phenolic OH group by \(tert - {\text{butylOO}}^{ \bullet }\), owing to their activation by the metalloelement through weakening the intramolecular hydrogen bond. High reactivity of \(tert - {\text{butylOO}}^{ \bullet }\) with Mn(III) and Co(II) salicylidene Schiff base chelates was established. These salicylidene Schiff base chelates react in a 1:1 stoichiometric ratio with \(tert - {\text{butylOO}}^{ \bullet }\) without free radical formation and with the single-electron oxidation of central metalloelements. It is concluded that removal of alkylperoxyl radical by Cu(II)-, Fe(III)-, Zn(II)-, and Mn(II)-3,5-di-iso-propylsalicylate chelates, Mn(III) and Co(II) salicylidene Schiff base chelates may partially account for their biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7

Similar content being viewed by others

References

  1. J.R.J. Sorenson, Prog. Med. Chem. 26, 437–568 (1989)

    Article  Google Scholar 

  2. J.R.J. Sorenson, in Handbook of Metal–Ligand Interactions in Biological Fluids: Bioinorganic Medicine, vol. 2, ed. By G. Berthon (Marcel Dekker, New York, 1995), pp. 1128–1139

  3. K.T. Tadele, J. Pharm. Med. Res. 3, 73–77 (2017)

    Google Scholar 

  4. R.E. Milaeva, Curr. Top. Med. Chem. 11, 2703–2713 (2011)

    Article  Google Scholar 

  5. F.V. Rubens de Souza, W.F. De Giovani, Redox Rep. 9(1), 97–104 (2004)

    Article  Google Scholar 

  6. M. Khater, D. Ravishankar, F. Greco, H.M.I. Osborn, Future Med. Chem. 11, 2845–3286 (2019)

    Article  Google Scholar 

  7. S. Agrawal, J. Ultra Scientist Phys. Sci. 27(2)B, 113–116 (2015)

    MathSciNet  Google Scholar 

  8. M.S. Reddy, B. Prathima, M. Saraswathi, S. Babu, Y. Sarala, A.V. Reddy, J. App. Pharm. Sci. 6, 90–96 (2016)

    Article  Google Scholar 

  9. S.R. Doctrow, K. Huffman, C.B. Marcus, W. Musleh, A. Bruse, M. Baudry, B. Malfroy-Camine, Adv. Pharmacol. 38, 247–269 (1997)

    Article  Google Scholar 

  10. C. Barandier, F. Boucher, B. Malfroy, V.J. de Leiris, Vasc. Res. 34, 49–54 (1997)

    Article  Google Scholar 

  11. A. Bharat, M.N. Pratik, D.B. Pratik, Timbadiya. Int. J. Sci. Technol. Manag. 4, 642–652 (2015)

    Google Scholar 

  12. W.A. Zoubi, A.A.S.H. Al-Hamdani, K. Mosab, Appl. Organomet. Chem. 30, 810–817 (2016)

    Article  Google Scholar 

  13. B. Halliwell, J.M.C. Gutteridye, Free Radicals in Biology and Medicine, 2nd edn. (Clarendon, Oxford, 1989)

    Google Scholar 

  14. Ya.S. Lebedev, Russ. Chem. Rev. 37(5), 402–420 (1968)

    Article  ADS  Google Scholar 

  15. Y. Tampo, M. Yanaha, Lipids 31, 1029–1038 (1996)

    Article  Google Scholar 

  16. J.A. Howard, S.B. Tong, Can. J. Chem. 58, 1962–1965 (1980)

    Article  Google Scholar 

  17. J.A. Howard, J.C. Tait, T. Yamada, J.H.B. Chenier, Can. J. Chem. 59, 2184–2189 (1981)

    Article  Google Scholar 

  18. L.A. Tavadyan, V.A. Mardoyan, A.B. Nalbandyan, Arm. Chim. J. 39, 137–143 (1986). (In Russian)

    Google Scholar 

  19. L. Valgimigli, J.J.T. Banks, K.U. Ingold, J. Lusztyk, J. Am. Chem. Soc. 117, 9966–9971 (1995)

    Article  Google Scholar 

  20. T.N. Das, T. Dhanasekaran, Z.B. Alfassi, P. Neta, J. Phys. Chem. A 102, 280–284 (1998)

    Article  Google Scholar 

  21. S. Milardovic, D. Ivekovic, V. Rumeniak, B.S. Grabaric, Electroanalysis 17, 1847–1853 (2005)

    Article  Google Scholar 

  22. L.A. Tavadyan, V.A. Mardoyan, M.V. Musaelyan, Int. J. Chem. Kinet. 28, 555–564 (1996)

    Article  Google Scholar 

  23. L.A. Tavadyan, H.G. Tonikyan, S.H. Minasyan, L.A. Harutyunyan, F.T. Greenaway, S. Williams, R.A. Gray-Kaufman, J.R.J. Sorenson, Inorg. Chim. Acta 328, 1–12 (2002)

    Article  Google Scholar 

  24. L.A. Tavadyan, G.Z. Sedrakyan, S.H. Minasyan, F.T. Greenaway, J.R. Sorenson, Transit. Met. Chem. 29, 684–696 (2004)

    Article  Google Scholar 

  25. L.A. Tavadyan, A.K. Tonikyan, G.Z. Sedrakyan, S.H. Minasyan, F.T. Greenaway, J.R.J. Sorenson, J. Labelled Compd. Radiopharm. 44(Suppl), 5787–5789 (2001)

    Google Scholar 

  26. L.A. Tavadyan, H.G. Tonikyan, M.V. Musaelyan, A.E. Barsegyan, S.H. Minasyan, J.R.J. Sorenson, Int. J. Chem. Kinet. 39, 431–439 (2007)

    Article  Google Scholar 

  27. L.A. Tavadyan, S.H. Minasyan, M.V. Musaelyan, L.H. Harutyunyan, H.G. Tonikyan, J.R.J. Sorenson, Int. J. Chem. Kinet. 42, 56–67 (2010)

    Article  Google Scholar 

  28. L.A. Tavadyan, M.V. Musaelyan, S.H. Minasyan, F.T. Greenaway, Inorg. Chim. Acta 418, 119–125 (2014)

    Article  Google Scholar 

  29. G.Z. Sedrakyan, F.E. Evans, S.H. Minasyan, L.A. Tavadyan, G.W. Wangil, R. Walker, J.R.J. Sorenson, J. Coord. Chem. 61, 2861–2875 (2008)

    Article  Google Scholar 

  30. L.A. Tavadyan, V.A. Mardoyan, A.B. Nalbandyan, Chem. Phys. 5, 1377–1383 (1986). (In Russian)

    Google Scholar 

  31. D.A. Buckingham, A.M. Sargeson, in Chelating Agents and Metal Chelates, ed by F.P. Dwyer, D.P. Mellor (Academic Press, New York, 1964), pp. 237–283

  32. S.H. Bossmann, E. Oliveros, B.S. Go, S. Siegwart, E.P. Dahlen, L. Payawan Jr., M. Straub, M. Worner, A.M. Braun, J. Phys. Chem. A. 102, 5542–5550 (1998)

    Article  Google Scholar 

  33. D.A. Buckingham, in Inorganic Biochemistry, vol. 1, ed. By Eichhorn, (Elsevier Scientific, Amsterdam, 1975), p. 17. (In Russian, Mir, Moscow, 1978)

  34. W. Al Zoubi, A.A. Al-Hamdani, M. Kaseem, Appl. Organomet. Chem. 30, 810–817 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financed by State Committee of Science of Armenia (Basic Research program). The authors are grateful to colleagues from the United States, especially prof. J.R.J. Sorenson and prof. F.T. Greenaway, and colleagues of the Laboratory “Liquid phase free radical reactions and organic compounds oxidation” of the Institute of Chemical Physics of the National Academy of Sciences, Republic of Armenia, thanks to scientific collaboration with whom the results presented in this work were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levon A. Tavadyan.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavadyan, L.A., Musaelyan, M.V., Stepanyan, A.B. et al. Kinetic EPR-Studies of the Anti-Peroxyl Radical Reactivities with Various Metallochelates of 3,5-Di-Iso-Propylsalicyalte and Salicylidene Schiff Base. Appl Magn Reson 51, 1049–1069 (2020). https://doi.org/10.1007/s00723-020-01234-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01234-w

Navigation