Skip to main content
Log in

Alginate Calcium Microbeads Containing Chitosan Nanoparticles for Controlled Insulin Release

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Effective delivery system for oral insulin administration is a promising way for diabetes therapy. Herein, we prepared alginate microbeads containing chitosan nanoparticles (CNP) for controlled release of insulin. CNP was developed by reaction between tripolyphosphate (TPP) and chitosan. The ratio of TPP to chitosan was optimized aiming with smaller and more unified distributed CNP. TEM and DLS analysis confirmed that CNP has size around 150 nm with low PDI value and strong surface charge. Encapsulate ability for bovine serum albumin, working as model protein, was 11.45%, and the encapsulate efficiency was 23.70%. To modify the release profile of protein suitable for oral insulin delivery, sodium alginate was applied to coat on the surface of CNP by electrostatic interaction. After that, CaCl2 was added to reinforce the alginate coating layer. FTIR analysis confirmed the interaction of alginate with chitosan and reaction with calcium ion. After reaction with Ca2+ ion, size measurement revealed that CNP was incorporated into alginate microbeads with mean diameter about 3.197 μm. Alginate microbeads presented irregular shape with small particles inside as revealed by optical microscope. Meanwhile, the release test demonstrated that protein release was pH-dependent. Acidic pH value retards protein release and neutral pH value promotes protein release. At last, insulin-loaded alginate microbeads were administrated to hyperglycemia model mice and blood glucose profile was monitored afterward. Insulin-loaded microbeads significantly lowered blood glucose level compared with mice treated with alginate microbeads without insulin. It is noted that insulin-loaded alginate microbeads could lower blood glucose level in much prolonged period of 96 h, indicating that insulin was released in controlled manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fonte, P., Araujo, F., Silva, C., Pereira, C., Reis, S., Santos, H. A., & Sarmento, B. (2015). Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnology Advances, 33(6), 1342–1354.

    Article  CAS  Google Scholar 

  2. Khafagy, E. S., Morishita, M., Onuki, Y., & Takayama, K. (2007). Current challenges in non-invasive insulin delivery systems: a comparative review. Advanced Drug Delivery Reviews, 59(15), 1521–1546.

    Article  CAS  Google Scholar 

  3. Chaturvedi, K., Ganguly, K., Nadagouda, M. N., & Aminabhavi, T. M. (2013). Polymeric hydrogels for oral insulin delivery. Journal of Controlled Release, 165(2), 129–138.

    Article  CAS  Google Scholar 

  4. Mukhopadhyay, P., Mishra, R., Rana, D., & Kundu, P. P. (2012). Strategies for effective oral insulin delivery with modified chitosan nanoparticles: a review. Progress in Polymer Science, 37(11), 1457–1475.

    Article  CAS  Google Scholar 

  5. Zokaei, E., Badoei-dalfrad, A., Ansari, M., Karami, Z., Eslaminejad, T., & Nematollahi-Mahani, S. N. (2019). Therapeutic potential of DNAzyme Loaded on chitosan/cyclodextrin nanoparticle to recovery of chemosensitivity in the MCF-7 cell line. Applied Biochemistry and Biotechnology, 187(3), 708–723.

    Article  CAS  Google Scholar 

  6. Luo, Y. C., Teng, Z., Li, Y., & Wang, Q. (2015). Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydrate Polymers, 122, 221–229.

    Article  CAS  Google Scholar 

  7. Wang, J., Xu, M. X., Cheng, X. J., Kong, M., Liu, Y., Feng, C., & Chen, X. G. (2016). Positive/negative surface charge of chitosan based nanogels and its potential influence on oral insulin delivery. Carbohydrate Polymers, 136, 867–874.

    Article  CAS  Google Scholar 

  8. George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan - a review. Journal of Controlled Release, 114(1), 1–14.

    Article  CAS  Google Scholar 

  9. Lopez-Hortas, L., Dominguez, H., & Torres, M. D. (2019). Valorisation of edible brown seaweeds by the recovery of bioactive compounds from aqueous phase using MHG to develop innovative hydrogels. Process Biochemistry, 78, 100–107.

    Article  CAS  Google Scholar 

  10. Alexakis, T., Boadi, D. K., Quong, D., Groboillot, A. F., & Neufeld, R. J. (1995). Microencapsulation of DNA within alginate microspheres and crosslinked chitosan membranes for in vivo application. Applied Biochemistry and Biotechnology, 50(1), 93–106.

    Article  CAS  Google Scholar 

  11. Li, J., Kim, S. Y., Chen, X., & Park, H. J. (2016). Calcium-alginate beads loaded with gallic acid: Preparation and characterization. LWT- Food Science and Technology, 68, 667–673.

    Article  CAS  Google Scholar 

  12. Reis, C. P., Ribeiro, A. J., Neufeld, R. J., & Veiga, F. (2007). Alginate microparticles as novel carrier for oral insulin delivery. Biotechnology and Bioengineering, 96(5), 977–989.

    Article  CAS  Google Scholar 

  13. Silva, C. M., Ribeiro, A. J., Figueiredo, I. V., Goncalves, A. R., & Veiga, F. (2006). Alginate microspheres prepared by internal gelation: development and effect on insulin stability. International Journal of Pharmaceutics, 311(1-2), 1–10.

    Article  CAS  Google Scholar 

  14. Mukhopadhyay, P., Chakraborty, S., Bhattacharya, S., Mishra, R., & Kundu, P. P. (2015). pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. International Journal of Biological Macromolecules, 72, 640–648.

    Article  CAS  Google Scholar 

  15. Liu, Y., Zong, S., & Li, J. (2019). Attenuation Effects of Bulk and Nanosized ZnO on Glucose, Lipid Level, and Inflammation Profile in Obese Mice. Applied Biochemistry and Biotechnology, 190, 475–486.

    Article  Google Scholar 

  16. Wang, Y., Su, N., Hou, G., Li, J., & Ye, M. (2017). Hypoglycemic and hypolipidemic effects of a polysaccharide from Lachnum YM240 and its derivatives in mice, induced by a high fat diet and low dose STZ. Medchemcomm, 8(5), 964–974.

    Article  CAS  Google Scholar 

  17. Liu, H., & Gao, C. Y. (2009). Preparation and properties of ionically cross-linked chitosan nanoparticles. Polymers for Advanced Technologies, 20(7), 613–619.

    Article  CAS  Google Scholar 

  18. Kalam, M. A. (2016). Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. International Journal Of Biological Macromolecules, 89, 127–136.

    Article  Google Scholar 

  19. Li, J., Shin, G. H., Chen, X. G., & Park, H. J. (2015). Modified curcumin with hyaluronic acid: Combination of pro-drug and nano-micelle strategy to address the curcumin challenge. Food Research International, 69, 202–208.

    Article  CAS  Google Scholar 

  20. Hari, P., Chandy, T., & Sharma, C. P. (1996). Chitosan/calcium–alginate beads for oral delivery of insulin. Journal of Applied Polymer Science, 59(11), 1795–1801.

    Article  CAS  Google Scholar 

  21. Zhang, H.-L., Wu, S.-h., Tao, Y., Zang, L.-q., & Su, Z.-q. (2010). Preparation and characterization of water-soluble chitosan nanoparticles as protein delivery system. Journal of Nanomaterials, 2010(1), 1–5. https://doi.org/10.1155/2010/898910.

    Article  CAS  Google Scholar 

  22. Dehkordi, S. S., Alemzadeh, I., Vaziri, A. S., & Vossoughi, A. (2019). Optimization of alginate-whey protein isolate microcapsules for survivability and release behavior of probiotic bacteria. Applied Biochemistry and Biotechnology, 190, 182–196.

    Article  Google Scholar 

  23. Zhang, N., Li, J., Jiang, W., Ren, C., Li, J., Xin, J., & Li, K. (2010). Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles. International Journal of Pharmaceutics, 393(1-2), 213–219.

    Article  Google Scholar 

  24. Gan, Q., & Wang, T. (2007). Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release. Colloids and Surfaces. B, Biointerfaces, 59(1), 24–34.

    Article  CAS  Google Scholar 

  25. Moeini, A., Cimmino, A., Dal Poggetto, G., Di Biase, M., Evidente, A., Masi, M., Lavermicocca, P., Valerio, F., Leone, A., Santagata, G., & Malinconico, M. (2018). Effect of pH and TPP concentration on chemico-physical properties, release kinetics and antifungal activity of Chitosan-TPP-Ungeremine microbeads. Carbohydrate Polymers, 195, 631–641.

    Article  CAS  Google Scholar 

  26. Morris, G. A., Castile, J., Smith, A., Adams, G. G., & Harding, S. E. (2011). The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP) - chitosan nanoparticles. Carbohydrate Polymers, 84(4), 1430–1434.

    Article  CAS  Google Scholar 

  27. Xu, Y. M., & Du, Y. M. (2003). Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics, 250(1), 215–226.

    Article  CAS  Google Scholar 

  28. Moya, M. L., Morley, M., Khanna, O., Opara, E. C., & Brey, E. M. (2012). Stability of alginate microbead properties in vitro. Journal Of Materials Science-Materials In Medicine, 23(4), 903–912.

    Article  CAS  Google Scholar 

  29. Shah, S., Pal, A., Kaushik, V., & Devi, S. (2009). Preparation and characterization of venlafaxine hydrochloride-loaded chitosan nanoparticles and in vitro release of drug. Journal of Applied Polymer Science, 112(5), 2876–2887.

    Article  CAS  Google Scholar 

  30. Mumuni, M. A., Kenechukwu, F. C., Ofokansi, K. C., Attama, A. A., & Díaz, D. D. (2020). Insulin-loaded mucoadhesive nanoparticles based on mucin-chitosan complexes for oral delivery and diabetes treatment. Carbohydrate Polymers, 229. https://doi.org/10.1016/j.carbpol.2019.115506 .

  31. Sarmento, B., Ferreira, D., Veiga, F., & Ribeiro, A. (2006). Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydrate Polymers, 66(1), 1–7.

    Article  CAS  Google Scholar 

  32. Sarmento, B., Ribeiro, A., Veiga, F., Sampaio, P., Neufeld, R., & Ferreira, D. (2007). Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharmaceutical Research, 24(12), 2198–2206.

    Article  CAS  Google Scholar 

  33. Zhang, Y., Wei, W., Lv, P., Wang, L., & Ma, G. (2011). Preparation and evaluation of alginate–chitosan microspheres for oral delivery of insulin. European Journal of Pharmaceutics and Biopharmaceutics, 77(1), 11–19.

    Article  CAS  Google Scholar 

  34. Sarkar, S., Das, D., Dutta, P., Kalita, J., & Manna, P. (2020). Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydrate Polymers, 247, 116594. https://doi.org/10.1016/j.carbpol.2020.116594.

    Article  CAS  PubMed  Google Scholar 

  35. Kevin, L., Huixia, W., Andrew S. N., & Julie A. C. (2019) Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles. Journal of Controlled Release, 295, 174–186.

Download references

Funding

This work is supported by National Natural Science Foundation of China (31700015), Fundamental Research Funds for the Central Universities (JZ2018HGTB0244) and Anhui Natural Science Foundation (1808085QC66).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinglei Li.

Ethics declarations

Competing Financial Interests

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wu, H., Jiang, K. et al. Alginate Calcium Microbeads Containing Chitosan Nanoparticles for Controlled Insulin Release. Appl Biochem Biotechnol 193, 463–478 (2021). https://doi.org/10.1007/s12010-020-03420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03420-9

Keywords

Navigation