Skip to main content
Log in

Structural Anisotropy vs. Mechanical Anisotropy: The Contribution of Axonal Fibers to the Material Properties of Brain White Matter

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Brain’s micro-structure plays a critical role in its macro-structure material properties. Since the structural anisotropy in the brain white matter has been introduced due to axonal fibers, considering the direction of axons in the continuum models has been mediated to improve the results of computational simulations. The aim of the current study was to investigate the role of fiber direction in the material properties of brain white matter and compare the mechanical behavior of the anisotropic white matter and the isotropic gray matter. Diffusion tensor imaging (DTI) was employed to detect the direction of axons in white matter samples, and tensile stress-relaxation loads up to 20% strains were applied on bovine gray and white matter samples. In order to calculate the nonlinear and time-dependent properties of white matter and gray matter, a visco-hyperelastic model was used. The results indicated that the mechanical behavior of white matter in two orthogonal directions, parallel and perpendicular to axonal fibers, are significantly different. This difference indicates that brain white matter could be assumed as an anisotropic material and axons have contribution in the mechanical properties. Also, up to 15% strain, white matter samples with axons parallel to the force direction are significantly stiffer than both the gray matter samples and white matter samples with axons perpendicular to the force direction. Moreover, the elastic moduli of white matter samples with axons both parallel and perpendicular to the loading direction and gray matter samples at 15–20% strain are not significantly different. According to these observations, it is suggested that axons have negligible roles in the material properties of white matter when it is loaded in the direction perpendicular to the axon direction. Finally, this observation showed that the anisotropy of brain tissue not only has effects on the elastic behavior, but also has effects on the viscoelastic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alfasi, A. M., A. V. Shulyakov, and M. R. Del Bigio. Intracranial biomechanics following cortical contusion in live rats. J. Neurosurg. 119:1255–1262, 2013.

    PubMed  Google Scholar 

  2. Arbogast, K. B., and S. S. Margulies. Material characterization of the brainstem from oscillatory shear tests. J. Biomech. 31:801–807, 1998.

    CAS  PubMed  Google Scholar 

  3. Atay, S. M., C. D. Kroenke, A. Sabet, and P. V. Bayly. Measurement of the dynamic shear modulus of mouse brain tissue in vivo by magnetic resonance elastography. J. Biomech. Eng. 130:021013, 2008.

    PubMed  PubMed Central  Google Scholar 

  4. Auhustinack, J. Direct visualization of the perforant pathway in the human brain with ex vivo diffusion tensor imaging. Front. Hum. Neurosci. 4:1–13, 2010.

    Google Scholar 

  5. Bain, A. C., and D. F. Meaney. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J. Biomech. Eng. 122:615–622, 2000.

    CAS  PubMed  Google Scholar 

  6. Basser, P. J., J. Mattiello, and D. LeBihan. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66:259–267, 1994.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bayly, P. V., E. E. Black, R. C. Pedersen, E. P. Leister, and G. M. Genin. In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury. J. Biomech. 39:1086–1095, 2006.

    PubMed  PubMed Central  Google Scholar 

  8. Berns, G. S., P. F. Cook, S. Foxley, S. Jbabdi, K. L. Miller, and L. Marino. Diffusion tensor imaging of dolphin brains reveals direct auditory pathway to temporal lobe. Proc. R. Soc. B Biol. Sci. 282:20151203, 2015.

    Google Scholar 

  9. Budday, S., R. Nay, R. de Rooij, P. Steinmann, T. Wyrobek, T. C. Ovaert, and E. Kuhl. Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 46:318–330, 2015.

    PubMed  PubMed Central  Google Scholar 

  10. Budday, S., T. C. Ovaert, G. A. Holzapfel, P. Steinmann, and E. Kuhl. Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue. Arch. Comput. Methods Eng. 2019. https://doi.org/10.1007/s11831-019-09352-w.

    Article  Google Scholar 

  11. Budday, S., M. Sarem, L. Starck, G. Sommer, J. Pfefferle, N. Phunchago, E. Kuhl, F. Paulsen, P. Steinmann, V. P. Shastri, and G. A. Holzapfel. Towards microstructure-informed material models for human brain tissue. Acta Biomater. 104:53–65, 2020.

    CAS  PubMed  Google Scholar 

  12. Budday, S., G. Sommer, C. Birkl, C. Langkammer, J. Haybaeck, J. Kohnert, M. Bauer, F. Paulsen, P. Steinmann, E. Kuhl, and G. A. Holzapfel. Mechanical characterization of human brain tissue. Acta Biomater. 48:319–340, 2017.

    CAS  PubMed  Google Scholar 

  13. Carlsen, R. W., and N. P. Daphalapurkar. The importance of structural anisotropy in computational models of traumatic brain injury. Front. Neurol. 6:1–6, 2015.

    Google Scholar 

  14. Chatelin, S., J. Vappou, S. Roth, J. S. Raul, and R. Willinger. Towards child versus adult brain mechanical properties. J. Mech. Behav. Biomed. Mater. 6:166–173, 2012.

    CAS  PubMed  Google Scholar 

  15. Christ, A. F., K. Franze, H. Gautier, P. Moshayedi, J. Fawcett, R. J. M. Franklin, R. T. Karadottir, and J. Guck. Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. J. Biomech. 43:2986–2992, 2010.

    PubMed  Google Scholar 

  16. Dennerll, T. J., P. Lamoureux, R. E. Buxbaum, and S. R. Heidemann. The cytomechanics of axonal elongation and retraction. J. Cell Biol. 109:3073–3083, 1989.

    CAS  PubMed  Google Scholar 

  17. Elkin, B. S., L. F. Gabler, M. B. Panzer, and G. P. Siegmund. Brain tissue strains vary with head impact location: a possible explanation for increased concussion risk in struck versus striking football players. Clin. Biomech. 64:49–57, 2019.

    Google Scholar 

  18. Eskandari, F., M. Shafieian, M. M. Aghdam, and K. Laksari. A knowledge map analysis of brain biomechanics: current evidence and future directions. Clin. Biomech. 75:105000, 2020.

    Google Scholar 

  19. Eskandari, F., M. Shafieian, M. M. Aghdam, and K. Laksari. Tension strain-softening and compression strain-stiffening behavior of brain white matter. Ann. Biomed. Eng. 2020. https://doi.org/10.1007/s10439-020-02541-w.

    Article  PubMed  Google Scholar 

  20. Feng, Y., E. H. Clayton, Y. Chang, R. J. Okamoto, and P. V. Bayly. Viscoelastic properties of the ferret brain measured in vivo at multiple frequencies by magnetic resonance elastography. J. Biomech. 46:863–870, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Feng, Y., Y. Gao, T. Wang, L. Tao, S. Qiu, and X. Zhao. A longitudinal study of the mechanical properties of injured brain tissue in a mouse model. J. Mech. Behav. Biomed. Mater. 71:407–415, 2017.

    PubMed  Google Scholar 

  22. Feng, Y., C. H. Lee, L. Sun, S. Ji, and X. Zhao. Characterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modeling. J. Mech. Behav. Biomed. Mater. 65:490–501, 2017.

    PubMed  Google Scholar 

  23. Feng, Y., R. J. Okamoto, R. Namani, G. M. Genin, and P. V. Bayly. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23:117–132, 2013.

    PubMed  PubMed Central  Google Scholar 

  24. Finan, J. D., S. N. Sundaresh, B. S. Elkin, G. M. McKhann, and B. Morrison. Regional mechanical properties of human brain tissue for computational models of traumatic brain injury. Acta Biomater. 55:333–339, 2017.

    PubMed  Google Scholar 

  25. Fung, Y.-C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993. https://doi.org/10.1007/978-1-4757-2257-4.

    Book  Google Scholar 

  26. Garimella, H. T., and R. H. Kraft. Modeling the mechanics of axonal fiber tracts using the embedded finite element method. Int. J. Numer. Methods Biomed. Eng. 33:e2823, 2017.

    Google Scholar 

  27. Gefen, A., and S. S. Margulies. Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37:1339–1352, 2004.

    PubMed  Google Scholar 

  28. Giordano, C., and S. Kleiven. Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue. J. R. Soc. Interfaces 11:20130914, 2014.

    Google Scholar 

  29. Giordano, C., S. Zappalà, and S. Kleiven. Anisotropic finite element models for brain injury prediction: the sensitivity of axonal strain to white matter tract inter-subject variability. Biomech. Model. Mechanobiol. 16:1269–1293, 2017.

    PubMed  PubMed Central  Google Scholar 

  30. Green, M. A., L. E. Bilston, and R. Sinkus. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 21:755–764, 2008.

    PubMed  Google Scholar 

  31. Guilfoyle, D. N., J. A. Helpern, and K. O. Lim. Diffusion tensor imaging in fixed brain tissue at 7.0 T. NMR Biomed. 16:77–78164, 2003.

    PubMed  Google Scholar 

  32. Holzapfel, G. A. Nonlinear Solid Mechanics II. New York: Wiley, 2000.

    Google Scholar 

  33. Ji, S., W. Zhao, Z. Li, and T. W. McAllister. Head impact accelerations for brain strain-related responses in contact sports: a model-based investigation. Biomech. Model. Mechanobiol. 13:1121–1136, 2014.

    PubMed  PubMed Central  Google Scholar 

  34. Laksari, K., S. Assari, B. Seibold, K. Sadeghipour, and K. Darvish. Computational simulation of the mechanical response of brain tissue under blast loading. Biomech. Model. Mechanobiol. 14:459–472, 2015.

    PubMed  Google Scholar 

  35. Laksari, K., M. Shafieian, and K. Darvish. Constitutive model for brain tissue under finite compression. J. Biomech. 45:642–646, 2012.

    PubMed  Google Scholar 

  36. Leemans, A., B. Jeurissen, J. Sijbers, and D. K. Jones. ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proc. Int. Soc. Magn. Reson. Med. 17:3537, 2009.

    Google Scholar 

  37. Meaney, D. F. Relationship between structural modeling and hyperelastic material behavior: application to CNS white matter. Biomech. Model. Mechanobiol. 1:279–293, 2003.

    CAS  PubMed  Google Scholar 

  38. Meaney, D. F., B. Morrison, and C. Dale BassDale Bass. The mechanics of traumatic brain injury: a review of what we know and what we need to know for reducing its societal burden. J. Biomech. Eng. 2014. https://doi.org/10.1115/1.4026364.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Miller, K., K. Chinzei, G. Orssengo, and P. Bednarz. Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33:1369–1376, 2000.

    CAS  PubMed  Google Scholar 

  40. Mori, S., and J. Zhang. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539, 2006.

    CAS  PubMed  Google Scholar 

  41. Murphy, J. G. Evolution of anisotropy in soft tissue. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014. https://doi.org/10.1098/rspa.2013.0548.

    Article  Google Scholar 

  42. Perepelyuk, M., L. Chin, X. Cao, A. van Oosten, V. B. Shenoy, P. A. Janmey, and R. G. Wells. Normal and fibrotic rat livers demonstrate shear strain softening and compression stiffening: a model for soft tissue mechanics. PLoS ONE 11:e0146588, 2016.

    PubMed  PubMed Central  Google Scholar 

  43. Prange, M. T., and S. S. Margulies. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124:244–252, 2002.

    PubMed  Google Scholar 

  44. Prevost, T. P., G. Jin, M. A. de Moya, H. B. Alam, S. Suresh, and S. Socrate. Dynamic mechanical response of brain tissue in indentation in vivo, in situ and in vitro. Acta Biomater. 7:4090–4101, 2011.

    PubMed  Google Scholar 

  45. Qiu, S., W. Jiang, M. S. Alam, S. Chen, C. Lai, T. Wang, X. Li, J. Liu, M. Gao, Y. Tang, X. Li, J. Zeng, and Y. Feng. Viscoelastic characterization of injured brain tissue after controlled cortical impact (CCI) using a mouse model. J. Neurosci. Methods 330:108463, 2020.

    PubMed  Google Scholar 

  46. Sahoo, D., C. Deck, and R. Willinger. Brain injury tolerance limit based on computation of axonal strain. Accid. Anal. Prev. 92:53–70, 2016.

    PubMed  Google Scholar 

  47. Samadi-Dooki, A., G. Z. Voyiadjis, and R. W. Stout. An indirect indentation method for evaluating the linear viscoelastic properties of the brain tissue. J. Biomech. Eng. 139:061007, 2017.

    Google Scholar 

  48. Sarvghad-Moghaddam, H., A. Rezaei, M. Ziejewski, and G. Karami. Correlative analysis of head kinematics and brain’s tissue response: a computational approach toward understanding the mechanisms of blast TBI. Shock Waves 27:919–927, 2017.

    Google Scholar 

  49. Schmierer, K., C. A. M. Wheeler-Kingshott, P. A. Boulby, F. Scaravilli, D. R. Altmann, G. J. Barker, P. S. Tofts, and D. H. Miller. Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage 35:467–477, 2007.

    PubMed  PubMed Central  Google Scholar 

  50. Shafieian, M., K. K. Darvish, and J. R. Stone. Changes to the viscoelastic properties of brain tissue after traumatic axonal injury. J. Biomech. 42:2136–2142, 2009.

    PubMed  Google Scholar 

  51. Shi, L., Y. Han, H. Huang, J. Davidsson, and R. Thomson. Evaluation of injury thresholds for predicting severe head injuries in vulnerable road users resulting from ground impact via detailed accident reconstructions. Biomech. Model. Mechanobiol. 2020. https://doi.org/10.1007/s10237-020-01312-9.

    Article  PubMed  Google Scholar 

  52. Shuck, L. Z., and S. H. Advani. Rheological response of human brain tissue in shear. J. Basic Eng. 94:905–911, 1972.

    Google Scholar 

  53. van Oosten, A. S. G., X. Chen, L. Chin, K. Cruz, A. E. Patteson, K. Pogoda, V. B. Shenoy, and P. A. Janmey. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature 573:96–101, 2019.

    PubMed  Google Scholar 

  54. Velardi, F., F. Fraternali, and M. Angelillo. Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5:53–61, 2006.

    CAS  PubMed  Google Scholar 

  55. Weickenmeier, J., R. de Rooij, S. Budday, P. Steinmann, T. C. Ovaert, and E. Kuhl. Brain stiffness increases with myelin content. Acta Biomater. 42:265–272, 2016.

    CAS  PubMed  Google Scholar 

  56. Wright, R. M., and K. T. Ramesh. An axonal strain injury criterion for traumatic brain injury. Biomech. Model. Mechanobiol. 11:245–260, 2012.

    PubMed  Google Scholar 

  57. Wu, T., A. Alshareef, J. S. Giudice, and M. B. Panzer. Explicit modeling of white matter axonal fiber tracts in a finite element brain model. Ann. Biomed. Eng. 47:1908–1922, 2019.

    PubMed  Google Scholar 

  58. Yousefsani, S. A., A. Shamloo, and F. Farahmand. Nonlinear mechanics of soft composites: hyperelastic characterization of white matter tissue components. Biomech. Model. Mechanobiol. 19:1143–1153, 2020.

    PubMed  Google Scholar 

  59. Zhang, W., L. Liu, Y. Xiong, Y. Liu, S. Yu, C. Wu, and W. Guo. Effect of in vitro storage duration on measured mechanical properties of brain tissue. Sci. Rep. 8:1247, 2018.

    PubMed  PubMed Central  Google Scholar 

  60. Zhao, W., and S. Ji. White Matter Anisotropy for Impact Simulation and Response Sampling in Traumatic Brain Injury. J. Neurotrauma 36:250–263, 2019.

    PubMed  Google Scholar 

  61. Zhu, Z., C. Jiang, and H. Jiang. A visco-hyperelastic model of brain tissue incorporating both tension/compression asymmetry and volume compressibility. Acta Mech. 230:2125–2135, 2019.

    Google Scholar 

  62. Zlomuzica, A., S. Binder, and E. Dere. Gap Junctions in the Brain. New York: Elsevier, 2013. https://doi.org/10.1016/b978-0-12-415901-3.00001-3.

    Book  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the National Brain Mapping Lab (NBML), Tehran, Iran, for providing services for DTI acquisition and thank Fargol R. Araghi and Farzaneh Eskandari for assistance in mechanical testing.

Funding

Authors have not received any funding for this research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Shafieian.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, F., Shafieian, M., Aghdam, M.M. et al. Structural Anisotropy vs. Mechanical Anisotropy: The Contribution of Axonal Fibers to the Material Properties of Brain White Matter. Ann Biomed Eng 49, 991–999 (2021). https://doi.org/10.1007/s10439-020-02643-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02643-5

Keywords

Navigation