Skip to main content
Log in

Upper Bound Shakedown Analysis of Plates Utilizing the C\(^{1}\) Natural Element Method

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

This paper proposes a numerical solution method for upper bound shakedown analysis of perfectly elasto-plastic thin plates by employing the C\(^{1}\) natural element method. Based on the Koiter’s theorem and von Mises yield criterion, the nonlinear mathematical programming formulation for upper bound shakedown analysis of thin plates is established. In this formulation, the trail function of residual displacement increment is approximated by using the C\(^{1}\) shape functions, the plastic incompressibility condition is satisfied by introducing a constant matrix in the objective function, and the time integration is resolved by using the König’s technique. Meanwhile, the objective function is linearized by distinguishing the non-plastic integral points from the plastic integral points and revising the objective function and associated equality constraints at each iteration. Finally, the upper bound shakedown load multipliers of thin plates are obtained by direct iterative and monotone convergence processes. Several benchmark examples verify the good precision and fast convergence of this proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen G, Liu YH. Numerical theories and engineering methods for structural limit and shakedown analyses. Beijing, 2006.

  2. Melan E. Zur Plastizität des räumlichen Kontinuums. Ing-Arch. 1938;9:115–26.

  3. Koiter WT. A new general theorem on shakedown of elastic-plasitc structures. Proc Konink Nederl Akad Wetensch B. 1956;59:24–34.

    MathSciNet  MATH  Google Scholar 

  4. Zhou ST, Liu YH, Wang DD, Wang K, Yu SY. Upper bound shakedown analysis with the nodal natural element method. Comput Mech. 2014;54(5):1111–28.

    Article  MathSciNet  Google Scholar 

  5. Li KY, Liu XS, Xu BY. An experimental shakedown investigation of built-in circular plates. Chin J Appl Mech. 1989;6(3):1989.

    Google Scholar 

  6. Giambanco F, Palizzolo L, Polizzotto C. Optimal shakedown design of circular plates. J Eng Mech-ASCE. 1994;120(12):2535–56.

    Article  Google Scholar 

  7. Chinh PD. Plastic collapse of a circular plate under cyclic loads. Int J Plast. 2003;19(4):547–59.

    Article  Google Scholar 

  8. Yu MH, Ma GW, Li JC. Structural plasticity limit, shakedown and dynamic plastic analyses of structures. New York: Springer; 2009.

    Google Scholar 

  9. Alwis WAM, Grundy P. Shakedown analysis of plates. Int J Mech Sci. 1985;27(1–2):71–82.

    Article  Google Scholar 

  10. Qian LX, Wang ZB. Limit analysis and shakedown analysis of bending plates and rotational shell-method of temperature parameters Acta Mechanica Sinica. 1989;21(sup):1989.

  11. Atkociunas J, Rimkus L, Skarlzauskas V, Jarmolajeva E. Optimal shakedown design of plates. Mechanika. 2007;5:14–23.

    Google Scholar 

  12. Tran TN. A dual algorithm for shakedown analysis of plate bending. Int J Numer Meth Eng. 2011;86(7):862–75.

    Article  MathSciNet  Google Scholar 

  13. Hasbroucq S, Oueslati A, de Saxce G. Analytical study of the asymptotic behavior of a thin plate with temperature-dependent elastic modulus under cyclic thermomechanical loadings. Int J Mech Sci. 2012;54:95–104.

    Article  Google Scholar 

  14. Zheng H, Peng X, Hu N. Optimal analysis for shakedown of functionally graded (FG) bree plate with genetic algorithm. Comput Mater Contin. 2014;41(1):55–84.

    Google Scholar 

  15. Blazevicius G, Rimkus L, Merkevicute D, Atkociunas J. Shakedown analysis of circular plates using a yield criterion of the mean. Struct Multidiscip Optim. 2017;55:25–36.

    Article  MathSciNet  Google Scholar 

  16. Zhang X, Liu Y, Ma S. Meshfree methods and their applications. Adv Mech. 2009;39(1):1–36 (in Chinese).

    Google Scholar 

  17. Le CV, Gilbert M, Askes H. Limit analysis of plates using the EFG method and second-order cone programming. Int J Numer Meth Eng. 2009;78(13):1532–52.

    Article  MathSciNet  Google Scholar 

  18. Le CV, Askes H, Gilbert M. Adaptive element-free Galerkin method applied to the limit analysis of plates. Comput Methods Appl Mech Eng. 2010;199(37–40):2487–96.

    Article  MathSciNet  Google Scholar 

  19. Zhou ST, Liu YH, Chen SS. Upper bound limit analysis of plates utilizing the C1 natural element method. Comput Mech. 2012;50(5):543–61.

    Article  MathSciNet  Google Scholar 

  20. Cueto E, Sukumar N, Calvo B, Martinez MA, Cegonino J, Doblare M. Overview and recent advances in natural neighbour Galerkin methods. Arch Comput Methods Eng. 2003;10(4):307–84.

    Article  MathSciNet  Google Scholar 

  21. Dinis LMJS, Jorge RMN, Belinha J. Analysis of plates and laminates using the natural neighbor radial point interpolation method. Eng Anal Bound Elem. 2008;32(3):267–79.

    Article  Google Scholar 

  22. Dinis LMJS, Jorge RMN, Belinha J. A natural neighbour meshless method with a 3D shell-like approach in the dynamic analysis of thin 3D structures. Thin-Walled Struct. 2011;49:185–96.

    Article  Google Scholar 

  23. Belinha J, Dinis LMJS, Natal Jorge RM. Analysis of thick plates by natural radial element method. Int J Mech Sci. 2013;76:33–48.

    Article  Google Scholar 

  24. Belinha J, Dinis LMJS, Natal Jorge RM. Composite laminated plate analysis using natural radial element method. Compos Struct. 2013;103:50–67.

    Article  Google Scholar 

  25. Li S, Liu K, Long S, Li G. The natural neighbor Petrov–Galerkin method for thick plates. Eng Anal Bound Elem. 2011;35(4):616–22.

    Article  MathSciNet  Google Scholar 

  26. Somireddy M, Rajagopal A. Meshless natural neighbor Galerkin method for the bending and vibration analysis of composite plates. Compos Struct. 2014;111:138–46.

    Article  Google Scholar 

  27. Kumar B, Somireddy M, Rajagopal A. Adaptive analysis of plates and laminates using natural neighbor Galerkin meshless method. Eng Comput. 2019;35:201–14.

    Article  Google Scholar 

  28. Sukumar N, Moran B. C-1 natural neighbor interpolant for partial differential equations. Numer Methods Partial Differ Equ. 1999;15(4):417–47.

    Article  MathSciNet  Google Scholar 

  29. Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids. Nature. 1995;376:655–60.

    Article  Google Scholar 

  30. Zhou ST, Liu YH. Upper bound limit analysis based on the natural element method. Acta Mech Sin. 2012;28(5):1398–415.

    Article  MathSciNet  Google Scholar 

  31. Zhou ST, Li Y, Zhou HB, Liu YH, Yu SY. A numerical estimate method for limit analysis of plane structures by adopting the natural element method. In: SMiRT-22 proceeding. San Francisco, California, USA, 2013.8.18-23:1279-1286.

  32. Zhou ST, Liu YH, Chen SS. Upper-bound limit analysis method of thin plates based on the nonconforming rectangular bending element. J Tsinghua Univ (Sci Technol). 2011;51(12):1887–93 (in Chinese).

    MathSciNet  Google Scholar 

Download references

Acknowledgements

S. Zhou is supported by the Chinese Postdoctoral Science Foundation (2013M540934). Y. Liu is supported by the National Key Research and Development Program of China (2016YFC0801905, 2017YFF0210704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutao Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Liu, Y., Ma, B. et al. Upper Bound Shakedown Analysis of Plates Utilizing the C\(^{1}\) Natural Element Method. Acta Mech. Solida Sin. 34, 221–236 (2021). https://doi.org/10.1007/s10338-020-00193-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-020-00193-w

Keywords

Navigation