Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 19, 2020

RNA secondary structure dependence in METTL3–METTL14 mRNA methylation is modulated by the N-terminal domain of METTL3

  • Nathalie Meiser , Nicole Mench and Martin Hengesbach ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

N6-methyladenosine (m6A) is the most abundant modification in mRNA. The core of the human N6-methyltransferase complex (MTC) is formed by a heterodimer consisting of METTL3 and METTL14, which specifically catalyzes m6A formation within an RRACH sequence context. Using recombinant proteins in a site-specific methylation assay that allows determination of quantitative methylation yields, our results show that this complex methylates its target RNAs not only sequence but also secondary structure dependent. Furthermore, we demonstrate the role of specific protein domains on both RNA binding and substrate turnover, focusing on postulated RNA binding elements. Our results show that one zinc finger motif within the complex is sufficient to bind RNA, however, both zinc fingers are required for methylation activity. We show that the N-terminal domain of METTL3 alters the secondary structure dependence of methylation yields. Our results demonstrate that a cooperative effect of all RNA-binding elements in the METTL3–METTL14 complex is required for efficient catalysis, and that binding of further proteins affecting the NTD of METTL3 may regulate substrate specificity.


Corresponding author: Martin Hengesbach, Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438Frankfurt, Germany, E-mail:

Award Identifier / Grant number: SFB902

Acknowledgments

This work was funded by DFG in SFB902 “Molecular Principles of RNA-based Regulation”, and by Goethe University Frankfurt. The authors would like to thank Prof. Harald Schwalbe for constant support. Gerd Hanspach is acknowledged for providing the OT RNA, Dr. Santosh Gande for help with protein expression, and Kaili Wang for assistance in CD-spectroscopy measurements.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by Deutsche Forschungsgemeinschaft (SFB902).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Adams, J.M. and Cory, S. (1975). Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature 255: 28–33. https://doi.org/10.1038/255028a0.Search in Google Scholar PubMed

Boccaletto, P., Machnicka, M.A., Purta, E., Piątkowski, P., Bagiński, B., Wirecki, T.K., de Crécy-Lagard, V., Ross, R., Limbach, P.A., Kotter, A., et al. (2018). MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46: D303–D307. https://doi.org/10.1093/nar/gkx1030.Search in Google Scholar PubMed PubMed Central

Bokar, J.A., Shambaugh, M.E., Polayes, D., Matera, A.G., and Rottman, F.M. (1997). Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3: 1233–1247.Search in Google Scholar

Chen, M., Wei, L., Law, C.-T., Tsang, F.H.-C., Shen, J., Cheng, C.L.-H., Tsang, L.-H., Ho, D.W.-H., Chiu, D.K.-C., Lee, J.M.-F., et al. (2018). RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67: 2254–2270. https://doi.org/10.1002/hep.29683.Search in Google Scholar PubMed

Desrosiers, R., Friderici, K., and Rottman, F. (1974). Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. U. S. A. 71: 3971–3975. https://doi.org/10.1073/pnas.71.10.3971.Search in Google Scholar PubMed PubMed Central

Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., et al. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485: 201–206. https://doi.org/10.1038/nature11112.Search in Google Scholar PubMed

Dunin-Horkawicz, S. (2006). MODOMICS: a database of RNA modification pathways. Nucleic Acids Res. 34: D145–D149. https://doi.org/10.1093/nar/gkj084.Search in Google Scholar PubMed PubMed Central

Fustin, J.-M., Doi, M., Yamaguchi, Y., Hida, H., Nishimura, S., Yoshida, M., Isagawa, T., Morioka, M.S., Kakeya, H., Manabe, I., et al. (2013). RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155: 793–806. https://doi.org/10.1016/j.cell.2013.10.026.Search in Google Scholar PubMed

Garcias Morales, D. and Reyes, J.L. (2020). A birds’‐eye view of the activity and specificity of the mRNA m6A methyltransferase complex. WIREs RNA: 1–15. https://doi.org/10.1002/wrna.1618.Search in Google Scholar PubMed

Grosjean, H., Keith, G., and Droogmans, L. (2004). Detection and quantification of modified nucleotides in RNA using thin-layer chromatography. Methods Mol. Biol. 265: 357–391. https://doi.org/10.1385/1-59259-775-0:357.10.1385/1-59259-775-0:357Search in Google Scholar

Gupta, Y.K., Chan, S.H., Xu, S.Y., and Aggarwal, A.K. (2015). Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I. Nat. Commun. 6: 1–10. https://doi.org/10.1038/ncomms8363.Search in Google Scholar PubMed PubMed Central

Harper, J.E., Micelil, S.M., Roberts1, R.J., and Manley, J.L. (1990). Sequence specificity of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res. 18: 5735–5741. https://doi.org/10.1093/nar/18.19.5735.Search in Google Scholar

Helm, M., Lyko, F., and Motorin, Y. (2019). Limited antibody specificity compromises epitranscriptomic analyses. Nat. Commun. 10: 5669. https://doi.org/10.1038/s41467-019-13684-3.Search in Google Scholar

Horowitz, S., Horowitz, A., Nilsen, T.W., Munns, T.W., and Rottman, F.M. (1984). Mapping of N6-methyladenosine residues in bovine prolactin mRNA. Proc. Natl. Acad. Sci. U. S. A. 81: 5667–5671. https://doi.org/10.1073/pnas.81.18.5667.Search in Google Scholar

Huang, J., Dong, X., Gong, Z., Qin, L.-Y., Yang, S., Zhu, Y.-L., Wang, X., Zhang, D., Zou, T., Yin, P., et al. (2019). Solution structure of the RNA recognition domain of METTL3-METTL14 N6-methyladenosine methyltransferase. Protein Cell 10: 272–284. https://doi.org/10.1007/s13238-018-0518-7.Search in Google Scholar

Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.-G., et al. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7: 885–887. https://doi.org/10.1038/nchembio.687.Search in Google Scholar

Keith, G. (1995). Mobilities of modified ribonucleotides on two-dimensional cellulose thin-layer chromatography. Biochimie 77: 142–144. https://doi.org/10.1016/0300-9084(96)88118-1.Search in Google Scholar

Knuckles, P., Carl, S.H., Musheev, M., Niehrs, C., Wenger, A., and Bühler, M. (2017). RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat. Struct. Mol. Biol. 24: 561–569. https://doi.org/10.1038/nsmb.3419.Search in Google Scholar PubMed

Knuckles, P., Lence, T., Haussmann, I.U., Jacob, D., Kreim, N., Carl, S.H., Masiello, I., Hares, T., Villaseñor, R., Hess, D., et al. (2018). Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 32: 415–429. https://doi.org/10.1101/gad.309146.117.Search in Google Scholar PubMed PubMed Central

L’Annunziata, M.F. (2012). Handbook of radioactivity analysis. Academic Press, Cambridge.Search in Google Scholar

Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., et al. (2014). A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10: 93–95. https://doi.org/10.1038/nchembio.1432.Search in Google Scholar PubMed PubMed Central

Louloupi, A., Ntini, E., Conrad, T., and Ørom, U.A.V. (2018). Transient N-6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency. Cell Rep. 23: 3429–3437. https://doi.org/10.1016/j.celrep.2018.05.077.Search in Google Scholar PubMed

Mergny, J.-L. and Lacroix, L. (2003). Analysis of thermal melting curves. Oligonucleotides 13: 515–537. https://doi.org/10.1089/154545703322860825.Search in Google Scholar

Meyer, K.D. and Jaffrey, S.R. (2014). The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol. 15: 313–326. https://doi.org/10.1038/nrm3785.Search in Google Scholar

Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., and Jaffrey, S.R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149: 1635–1646. https://doi.org/10.1016/j.cell.2012.05.003.Search in Google Scholar

Patil, D.P., Chen, C.-K., Pickering, B.F., Chow, A., Jackson, C., Guttman, M., and Jaffrey, S.R. (2016). M6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537: 369–373. https://doi.org/10.1038/nature19342.Search in Google Scholar

Ping, X.-L., Sun, B.-F., Wang, L., Xiao, W., Yang, X., Wang, W.-J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y.-S., et al. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24: 177–189. https://doi.org/10.1038/cr.2014.3.Search in Google Scholar

Schibler, U., Kelley, D.E., and Perry, R.P. (1977). Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J. Mol. Biol. 115: 695–714. https://doi.org/10.1016/0022-2836(77)90110-3.Search in Google Scholar

Schmidt, A., Altincekic, N., Gustmann, H., Wachtveitl, J., and Hengesbach, M. (2018). The protein microenvironment governs the suitability of labeling sites for single-molecule spectroscopy of RNP complexes. ACS Chem. Biol. 13: 2472–2483. https://doi.org/10.1021/acschembio.8b00348.Search in Google Scholar PubMed

Schöller, E., Weichmann, F., Treiber, T., Ringle, S., Treiber, N., Flatley, A., Feederle, R., Bruckmann, A., and Meister, G. (2018). Interactions, localization, and phosphorylation of the m6A generating METTL3–METTL14–WTAP complex. RNA 24: 499–512. https://doi.org/10.1261/rna.064063.117.Search in Google Scholar PubMed PubMed Central

Schwartz, S., Mumbach, M.R., Jovanovic, M., Wang, T., Maciag, K., Bushkin, G.G., Mertins, P., Ter-Ovanesyan, D., Habib, N., Cacchiarelli, D., et al. (2014). Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8: 284–296. https://doi.org/10.1016/j.celrep.2014.05.048.Search in Google Scholar PubMed PubMed Central

Śledź, P. and Jinek, M. (2016). Structural insights into the molecular mechanism of the m6A writer complex. eLife 5: 1–16. https://doi.org/10.7554/eLife.18434.Search in Google Scholar PubMed PubMed Central

Slobodin, B., Han, R., Calderone, V., Vrielink, J.A.F.O., Loayza-Puch, F., Elkon, R., and Agami, R. (2017). Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell 169: 326–337.e12. https://doi.org/10.1016/j.cell.2017.03.031.Search in Google Scholar PubMed PubMed Central

Wang, Y., Li, Y., Toth, J.I., Petroski, M.D., Zhang, Z., and Zhao, J.C. (2014). N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16: 191–198. https://doi.org/10.1038/ncb2902.Search in Google Scholar PubMed PubMed Central

Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H., and He, C. (2015). N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161: 1388–1399. https://doi.org/10.1016/j.cell.2015.05.014.Search in Google Scholar PubMed PubMed Central

Wang, P., Doxtader, K.A., and Nam, Y. (2016a). Structural basis for cooperative function of METTL3 and METTL14 methyltransferases. Mol. Cell 63: 306–317. https://doi.org/10.1016/j.molcel.2016.05.041.Search in Google Scholar PubMed PubMed Central

Wang, X., Feng, J., Xue, Y., Guan, Z., Zhang, D., Liu, Z., Gong, Z., Wang, Q., Huang, J., Tang, C., et al. (2016b). Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature 534: 575–578. https://doi.org/10.1038/nature18298.Search in Google Scholar PubMed

Wei, C.M. and Moss, B. (1977). Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry 16: 1672–1676. https://doi.org/10.1021/bi00627a023.Search in Google Scholar PubMed

Woodcock, C.B., Yu, D., Hajian, T., Li, J., Huang, Y., Dai, N., Corrêa, I.R., Wu, T., Vedadi, M., Zhang, X., et al. (2019). Human METTL3–METTL14 complex is a sequence-specific DNA adenine methyltransferase active on single-strand and unpaired DNA in vitro. Cell Discov. 5: 63. https://doi.org/10.1038/s41421-019-0136-4.Search in Google Scholar PubMed PubMed Central

Xuan, J.-J., Sun, W.-J., Lin, P.-H., Zhou, K.-R., Liu, S., Zheng, L.-L., Qu, L.-H., and Yang, J.-H. (2018). RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res. 46: D327–D334. https://doi.org/10.1093/nar/gkx934.Search in Google Scholar PubMed PubMed Central

Yue, Y., Liu, J., Cui, X., Cao, J., Luo, G., Zhang, Z., Cheng, T., Gao, M., Shu, X., Ma, H., et al. (2018). VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4: 10. https://doi.org/10.1038/s41421-018-0019-0.Search in Google Scholar PubMed PubMed Central

Zhao, B.S., Roundtree, I.A., and He, C. (2016). Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18: 31–42. https://doi.org/10.1038/nrm.2016.132.Search in Google Scholar PubMed PubMed Central

Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.-M., Li, C.J., Vågbø, C.B., Shi, Y., Wang, W.-L., Song, S., et al. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49: 18–29. https://doi.org/10.1016/j.molcel.2012.10.015.Search in Google Scholar PubMed PubMed Central

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406–3415. https://doi.org/10.1093/nar/gkg595.Search in Google Scholar PubMed PubMed Central


Supplementary material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2020-0265).


Received: 2020-07-30
Accepted: 2020-09-29
Published Online: 2020-10-19
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2020-0265/html
Scroll to top button