Skip to main content
Log in

Optimizing over the properly efficient set of convex multi-objective optimization problems

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Optimizing over the efficient set of a multi-objective optimization problem is among the difficult problems in global optimization because of its nonconvexity, even in the linear case. In this paper, we consider only properly efficient solutions which are characterized through weighted sum scalarization. We propose a numerical method to tackle this problem when the objective functions and the feasible set of the multi-objective optimization problem are convex. This algorithm penalizes progressively iterates that are not properly efficient and uses a sequence of convex nonlinear subproblems that can be solved efficiently. The proposed algorithm is shown to perform well on a set of standard problems from the literature, as it allows to obtain optimal solutions in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In particular, we have observed this situation for problem \(P_9\) when \(\beta \ge 100\). The reason is that \(\gamma \) increases too fast hence \(\phi (x)\) is not given enough importance in the objective function.

References

  • Alves, M. J., & Costa, J. P. (2009). An exact method for computing the nadir values in multiple objective linear programming. European Journal of Operational Research, 198, 637–646.

    Google Scholar 

  • Ankhili, Z., & Mansouri, A. (2009). An exact penalty on bilevel programs with linear vector optimization lower level. European Journal of Operational Research, 197, 36–41.

    Google Scholar 

  • Belousov, E., & Klatte, D. (2002). A Frank–Wolfe type theorem for convex polynomial programs. Computational Optimization and Applications, 22, 37–48.

    Google Scholar 

  • Benson, H. P. (1984). Optimization over the efficient set. Journal of Mathematical Analysis and Applications, 98, 562–580.

    Google Scholar 

  • Benson, H. P. (1986). An algorithm for optimizing over the weakly-efficient set. European Journal of Operational Research, 25, 192–199.

    Google Scholar 

  • Benson, H. P. (1990). An all-linear programming relaxation algorithm for optimizing over the efficient set. Journal of Global Optimization, 1, 83–104.

    Google Scholar 

  • Benson, H. P. (1992). A finite, nonadjacent extreme-point search algorithm for optimization over the efficient set. Journal of Optimization Theory and Applications, 73, 47–64.

    Google Scholar 

  • Benson, H. P. (1993). A bisection-extreme point search algorithm for optimizing over the efficient set in the linear dependence case. Journal of Global Optimization, 3, 95–111.

    Google Scholar 

  • Benson, H. P. (2012). An outcome space algorithm for optimization over the weakly efficient set of a multiple objective nonlinear programming problem. Journal of Global Optimization, 52, 553–574.

    Google Scholar 

  • Benson, H. P., & Lee, D. (1996). Outcome-based algorithm for optimizing over the efficient set of a bicriteria linear programming problem. Journal of Optimization Theory and Applications, 88, 77–105.

    Google Scholar 

  • Bolintinéanu, S. (1993). Minimization of a quasi-concave function over an efficient set. Mathematical Programming, 61, 89–110.

    Google Scholar 

  • Bolintinéanu, S., & El Maghri, M. (1997). Pénalisation dans l’optimisation sur l’ensemble faiblement efficient. RAIRO Recherche opérationnelle, 31, 295–310.

    Google Scholar 

  • Bonnel, H., & Morgan, J. (2006). Semivectorial bilevel optimization problem: Penalty approach. Journal of Optimization Theory and Applications, 131, 365–382.

    Google Scholar 

  • Calvete, H. I., & Galé, C. (2011). On linear bilevel problems with multiple objectives at the lower level. Omega, 39, 33–40.

    Google Scholar 

  • Chinchuluun, A., & Pardalos, P. M. (2007). A survey of recent developments in multiobjective optimization. Annals of Operations Research, 154(1), 29–50.

    Google Scholar 

  • Dauer, J. P. (1991). Optimization over the efficient set using an active constraint approach. Mathematical Methods of Operations Research, 35, 185–195.

    Google Scholar 

  • Deb, K., Miettinen, K., & Chaudhuri, S. (2010). Toward an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Transactions on Evolutionary Computation, 14, 821–841.

    Google Scholar 

  • Dessouky, M., Ghiassi, M., & Davis, W.J. (1979). Determining the worst value of an objective function within the nondominated solutions in multiple objective linear programming, working Paper, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, Illinois.

  • Dessouky, M. I., Ghiassi, M., & Davis, W. J. (1986). Estimates of the minimum nondominated criterion values in multiple-criteria decision-making. Engineering Costs and Production Economics, 10, 95–104.

    Google Scholar 

  • Ecker, J. G., & Song, J. H. (1994). Optimizing a linear function over an efficient set. Journal of Optimization Theory and Applications, 83, 541–563.

    Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization. Berlin: Springer.

    Google Scholar 

  • Geoffrion, A. M. (1968). Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 22(3), 618–630.

    Google Scholar 

  • Geromel, J. C., & Ferreira, P. A. V. (1991). An upper bound on properly efficient solutions in multiobjective optimization. Operations Research Letters, 10, 83–86.

    Google Scholar 

  • Grant, M., & Boyd, S. (2008). Graph implementations for nonsmooth convex programs. In Recent advances in learning and control (pp. 95–110).

  • Grant, M.C., & Boyd, S.P. (2017). CVX: Matlab software for disciplined convex programming. http://cvxr.com/cvx.

  • Hamel, A. H., Löhne, A., & Rudloff, B. (2014). Benson type algorithms for linear vector optimization and applications. Journal of Global Optimization, 59(4), 811–836.

    Google Scholar 

  • Horst, R., & Thoai, N. V. (1999). Maximizing a concave function over the efficient or weakly-efficient set. European Journal of Operational Research, 117, 239–252.

    Google Scholar 

  • Isermann, H., & Steuer, R. E. (1987). Computational experience concrning payoff tables and minimum criterion values over the efficient set. European Journal of Operational Research, 33, 91–97.

    Google Scholar 

  • Jorge, J. M. (2005). A bilinear algorithm for optimizing a linear function over the efficient set of a multiple objective linear programming problem. Journal of Global Optimization, 31, 1–16.

    Google Scholar 

  • Karimi, M., & Karimi, B. (2017). Linear and conic scalarizations for obtaining properly efficient solutions in multiobjective optimization. Mathematical Sciences, 11(4), 319–325.

    Google Scholar 

  • Konno, H., & Inori, M. (1989). Bond portfolio optimization by bilinear fractional programming. Journal of the Operations Research Society of Japan, 32, 143–158.

    Google Scholar 

  • Konno, H., Thach, P. T., & Tuy, H. (1997). Optimization on low rank nonconvex structures. Boston: Springer.

    Google Scholar 

  • Korhonen, P., & Wallenius, J. (1989). A careful look at efficiency and utility in multiple criteria decision making: A tutorial. Asia-Pacific Journal of Operational Research, 6(1), 46–62.

    Google Scholar 

  • Kuhn, H.W., & Tucker, A.W. (1951). Nonlinear programming. In Proceedings of the second Berkeley symposium on mathematical statistics and probability (pp. 481–492). University of California Press, Berkeley and Los Angeles.

  • Liu, Z., & Ehrgott, M. (2018). Primal and dual algorithms for optimization over the efficient set. Optimization, 67(10), 1661–1686.

    Google Scholar 

  • Luc, D. T. (1989). Theory of vector optimization. Berlin: Springer.

    Google Scholar 

  • Luc, L. T. (2001). Reverse polyblock approximation for optimization over the weakly efficient set and efficient set. Acta Mathematica Vietnamica, 26, 65–80.

    Google Scholar 

  • Miettinen, K. (1999). Nonlinear multiobjective optimization. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Muu, L. D. (2000). A convex-concave programming method for optimizing over the efficient set. Acta Mathematica Vietnamica, 25, 67–85.

    Google Scholar 

  • Nocedal, J., & Wright, S. (1999). Numerical optimization. New York: Springer.

    Google Scholar 

  • Ogryczak, W. (2000). Multiple criteria linear programming model for portfolio selection. Annals of Operations Research, 97(1), 143–162.

    Google Scholar 

  • Phillip, J. (1972). Algorithms for the vector maximization problem. Mathematical Programming, 2, 207–229.

    Google Scholar 

  • Reeves, G. R., & Reid, R. C. (1988). Minimum values over the efficient set in multiple objective decision making. European Journal of Operational Research, 36, 334–338.

    Google Scholar 

  • Ren, A., & Wang, Y. (2016). A novel penalty function method for semivectorial bilevel programming problem. Applied Mathematical Modelling, 40, 135–149.

    Google Scholar 

  • Sayin, S. (2000). Optimizing over the efficient set using a top-down search of faces. Operations Research, 48, 65–72.

    Google Scholar 

  • Shigeno, M., Takahashi, I., & Yamamoto, Y. (2003). Minimum maximal flow problem: An optimization over the efficient set. Journal of Global Optimization, 25, 425–443.

    Google Scholar 

  • Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation, and applications. New York: Wiley.

    Google Scholar 

  • Steuer, R. E., Qi, Y., & Hirschberger, M. (2007). Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Annals of Operations Research, 152(1), 297–317.

    Google Scholar 

  • Thach, P. T., & Thang, T. V. (2014). Problems with resource allocation constraints and optimization over the efficient set. Journal of Global Optimization, 58, 481–495.

    Google Scholar 

  • Thach, P. T., Konno, H., & Yokota, D. (1996). Dual approach to minimization on the set of pareto-optimal solutions. Journal of optimization theory and applications, 88, 689–707.

    Google Scholar 

  • Thoai, N. V. (2000a). A class of optimization problems over the efficient set of a multiple criteria nonlinear programming problem. European Journal of Operational Research, 122, 58–68.

    Google Scholar 

  • Thoai, N. V. (2000b). Conical algorithm in global optimization for optimizing over efficient sets. Journal of Global Optimization, 18, 321–336.

    Google Scholar 

  • Toh, K. C., Todd, M., & Tütüncü, R. (1999). SDPT3–A MATLAB software package for semidefinite programming, version 1.3. Optimization Methods and Software, 11(1–4), 545–581.

    Google Scholar 

  • Tütüncü, R., Toh, K., & Todd, M. (2003). Solving semidefinite-quadratic-linear programs using SDPT3. Math Program, 95(2), 189–217.

    Google Scholar 

  • Tuy, H., & Hoai-Phuong, N. T. (2006). Optimization under composite monotonic constraints and constrained optimization over the efficient set. In L. Liberti & N. Maculan (Eds.), Global optimization: From theory to implementation (pp. 3–31)., Nonconvex optimization and its applications New York: Springer.

    Google Scholar 

  • Tuyen, H. Q., & Muu, L. D. (2001). Biconvex programming approach to optimization over the weakly efficient set of a multiple objective affine fractional problem. Operations Research Letters, 28, 81–92.

    Google Scholar 

  • Wang, H., He, S., & Yao, X. (2015). Nadir point estimation for many-objective optimization problems based on emphasized critical regions. Methodologies and Application, 21, 2283–2295.

    Google Scholar 

  • White, D. J. (1996). The maximization of a function over the efficient set via a penalty function approach. European Journal of Operational Research, 94, 143–153.

    Google Scholar 

  • Wierzbicki, A. P. (1980). The use of reference objectives in multiobjective optimization. In Multiple criteria decision making theory and application (pp. 468–486). Berlin, Heidelberg, Lecture Notes in Economics and Mathematical Systems: Springer.

  • Yamada, S., Tanino, T., & Inuiguchi, M. (2000). An inner approximation method for optimization over the weakly efficient set. Journal of Global Optimization, 16, 197–217.

    Google Scholar 

  • Yamada, S., Tanino, T., & Inuiguchi, M. (2001). An inner approximation method incorporating a branch and bound procedure for optimization over the weakly efficient set. European Journal of Operational Research, 133, 267–286.

    Google Scholar 

  • Yamamoto, Y. (2003). Optimization over the efficient set: overview. Journal of Global Optimization, 22, 285–317.

    Google Scholar 

  • Zheng, Y., & Wan, Z. (2011). A solution method for semivectorial bilevel programming problem via penalty method. Journal of Applied Mathematics and Computing, 37, 207–219.

    Google Scholar 

Download references

Acknowledgements

The first and third authors acknowledge the support of the Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT) Grant ID: C0656104. We are grateful to the reviewer whose comments allowed us to improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kahina Ghazli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazli, K., Gillis, N. & Moulaï, M. Optimizing over the properly efficient set of convex multi-objective optimization problems. Ann Oper Res 295, 575–604 (2020). https://doi.org/10.1007/s10479-020-03820-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03820-4

Keywords

Navigation