Skip to main content
Log in

Bifurcation delay, travelling waves and chimera-like states in a network of coupled oscillators

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We report novel bifurcation delays and chimera-like states in a network of driven FitzHugh-Nagumo (FHN) oscillators, where each oscillator can rotate either clockwise or anticlockwise. Slow variation of the time-dependent parameter of FHN oscillator near the bifurcation point leads to a delay in the bifurcation. The time delay in the bifurcation is independent of the direction of rotation of the system (clockwise or anticlockwise rotation). When the FHN oscillators are coupled via dissimilar variables, then bifurcation delay in the anticlockwise rotating oscillator changes, creating chimera-like structures and also travelling waves at certain coupling strength. Bifurcation preponement is also observed for other range of coupling strengths. Similar results are also observed in networks of van der Pol and Landau-Stuart oscillators suggesting that the phenomenon is general rather than specific to coupled FHN systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pikovsky, M. Rosenblum, J. Kurths,Synchronization: A Universal Concept in Nonlinear Science (Cambridge University Press, Cambridge, 2001)

  2. Y. Kuramoto,Chemical Oscillations, Waves and Turbulence (Springer-Verlag, Berlin, 1984)

  3. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 4193 (1997)

    Article  ADS  Google Scholar 

  4. M.J. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015)

    Article  ADS  Google Scholar 

  5. F.M. Atay, Phys. Rev. Lett. 91, 094101 (2003)

    Article  ADS  Google Scholar 

  6. G. Saxena, A. Prasad, R. Ramaswamy, Phys. Rep. 521, 205 (2012)

    Article  ADS  Google Scholar 

  7. G. Saxena, N. Punetha, A. Prasad, R. Ramaswamy, AIP Conf. Proc. 1582, 158 (2014)

    Article  ADS  Google Scholar 

  8. A. Koseska, E. Volkov, J. Kurths, Phys. Rep. 531, 173 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Prasad, Phys. Rev. E 72, 056204 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Premraj, K. Suresh, T. Banerjee, K. Thamilmaran, Commun. Nonlinear Sci. Numer. Simul. 37, 212 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Premraj, K. Suresh, T. Banerjee, K. Thamilmaran, Chaos 27, 013104 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Premraj, K. Suresh, T. Banerjee, K. Thamilmaran, Phys. Rev. E 98, 022206 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Premraj, K. Suresh, J. Palanivel, K. Thamilmaran, Commun. Nonlinear Sci. Numer. Simul. 50, 103 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Palanivel, K. Suresh, D. Premraj, K. Thamilmaran, Chaos Solitons Fractals 106, 35 (2017)

    Article  ADS  Google Scholar 

  15. E. Jakobsson, R. Guttman, inThe Biophysical Approach to Excitable Systems, edited by W.J. Adelman, D.E. Goldman (Plenum Press, New York, 1981), pp. 197–211

  16. A.I. Neishtadt, Diff. Equ. 23, 1385 (1987)

    Google Scholar 

  17. J. Rinzel, S.M. Baer, Biophys. J. 54, 551 (1987)

    Article  Google Scholar 

  18. S.M. Baer, T. Erneux, J. Rinzel, SIAM J. Appl. Math. 49, 55 (1989)

    Article  MathSciNet  Google Scholar 

  19. J.H. Talla Mbé, A.F. Talla, G.R. Goune Chengui, A. Coillet, L. Larger, P. Woafo, Y.K. Chembo, Phys. Rev. E. 91, 012902 (2015)

    Article  ADS  Google Scholar 

  20. G. Ahlers, M.C. Cross, P.C. Hohenberg, S. Safran, J. Fluid Mech. 110, 297 (1981)

    Article  ADS  Google Scholar 

  21. R. Mannella, F. Moss, P.V.E. McClintock, Phys. Rev. A 35, 2560 (1987)

    Article  ADS  Google Scholar 

  22. J.P. Laplante, T. Erneux, M. Georgiou, J. Chem. Phys. 94, 371 (1991)

    Article  ADS  Google Scholar 

  23. P. Strizhak, M. Menzinger, J. Chem. Phys. 105, 10905 (1996)

    Article  ADS  Google Scholar 

  24. S.H. Strogatz,Nonlinear dynamics and chaos, with applications to physics, biology, chemistry, and engineering (Perseus Books, New York, 1994)

  25. A.T. Winfree, J. Theor. Biol. 16, 15 (1967)

    Article  Google Scholar 

  26. S.H. Strogatz,Sync: The Emerging Science of Spontaneous Order (Hyperion Press, New York, 2003)

  27. K. Bar-Eli, J. Phys. Chem. 88, 6174 (1984)

    Article  Google Scholar 

  28. T. Stankovski, T. Pereira, P.V. McClintock, A. Stefanovska, Rev. Mod. Phys. 89,045001 (2017)

    Article  ADS  Google Scholar 

  29. H. Daido, Phys. Rev. Lett. 68, 1073 (1992)

    Article  ADS  Google Scholar 

  30. H. Daido, Prog. Theor. Phys. 77, 622 (1987)

    Article  ADS  Google Scholar 

  31. Y. Chen, J. Xiao, W. Liu, L. Li, Y. Yang, Phys. Rev. E 80, 046206 (2009)

    Article  ADS  Google Scholar 

  32. H. Hong, S.H. Strogatz, Phys. Rev. E 84, 046202 (2011)

    Article  ADS  Google Scholar 

  33. S. Watanabe, S.H. Strogatz, Phys. Rev. Lett. 70, 2391 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Watanabe, S.H. Strogatz, Physica D 74, 197 (1994)

    Article  ADS  Google Scholar 

  35. V. Varshney, P.R. Sharma, M.D. Shrimali, B. Biswal, A. Prasad, Int. J. Nonlinear Sci. 26, 13 (2018)

    MathSciNet  Google Scholar 

  36. K. Bar-Eli, Physica D 14, 242 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  37. R.E. Mirollo, S.H. Strogatz, J. Stat. Phys. 60, 245 (1990)

    Article  ADS  Google Scholar 

  38. G.B. Ermentrout, Physica D 41, 219 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  39. D.G. Aronson, G.B. Ermentrout, N. Kopell, Physica D 41, 403 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  40. D.V. Ramana Reddy, A. Sen, G.L. Johnston, Phys. Rev. Lett. 80, 5109 (1998)

    Article  ADS  Google Scholar 

  41. R. Karnatak, R. Ramaswamy, A. Prasad, Phys. Rev. E 76, 035201 (2007)

    Article  ADS  Google Scholar 

  42. M. Kim, R. Roy, J.L. Aron, T.W. Carr, I.B. Schwartz, Phys. Rev. Lett. 94, 088101 (2005)

    Article  ADS  Google Scholar 

  43. M.J. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015)

    Article  ADS  Google Scholar 

  44. S. Majhi, B.K. Bera, D. Ghosh, M. Perc, Phys. Life Rev. 28, 100 (2019)

    Article  ADS  Google Scholar 

  45. O.E. Omel’chenko, Nonlinearity 31, R121 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  46. E. Schöll, Eur. Phys. J. Special Topics 225, 891 (2016)

    Article  ADS  Google Scholar 

  47. D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)

    Article  ADS  Google Scholar 

  48. Y. Kuramoto, D. Battogtokh, Nonlin. Phen. Complex Sys. 5, 380 (2002)

    Google Scholar 

  49. A.S. Pikovsky, M.G. Rosenblum, J. Kurths,Synchronization: A universal concept in Non linear sciences (Cambridge University Press, Cambridge, 2001)

  50. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, Phys. Rep. 366, 1 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  51. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C.S. Zhou, Phys. Rep. 469, 93 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  52. A. Koseska, E. Volkov, J. Kurths, Chaos 20, 023132 (2010)

    Article  ADS  Google Scholar 

  53. C. Li, W. Sun, J. Kurths, Phys. Rev. E 76, 046201 (2007)

    Article  ADS  Google Scholar 

  54. A. Koseska, E. Volkov, J. Kurths, Phys. Rev. Lett. 111, 024103 (2013)

    Article  ADS  Google Scholar 

  55. I. Prigogine, R. Lefever, J. Chem. Phys. 48, 1695 (1968)

    Article  ADS  Google Scholar 

  56. P. Billant, P. Brancher, J-M. Chomaz, Phys. Fluid. 11, 2069 (1999)

    Article  ADS  Google Scholar 

  57. V. Varshney, G. Saxena, B. Biswal, A. Prasad, Chaos 27, 093104 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  58. A. Prasad, Chaos Soliton Fractrals 43, 42 (2010)

    Article  ADS  Google Scholar 

  59. N. Punetha, V. Varshney, S. Sahoo, G. Saxena, A. Prasad, R. Ramaswamy, Phys. Rev. E 98, 022212 (2018)

    Article  ADS  Google Scholar 

  60. D. Ghosh, I. Grosu, S.K. Dana, Chaos 22, 033111 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  61. W. Liu, J. Xiao, X. Qian, J. Yang, Phys. Rev. E 73, 057203 (2006)

    Article  ADS  Google Scholar 

  62. C.M. Kim, S. Rim, W.H. Kye, J.W. Ryu, Y.J. Park, Phys. Lett. A 320, 39 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  63. V. Belykh, I. Belykh, M. Hierarchy, Phys. Rev. E 62, 6332 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  64. S. Takagi, T. Ueda, Physica D 237, 420 (2008)

    Article  ADS  Google Scholar 

  65. Y. Murakami, H. Fukuta, Fluid Dyn. Res. 31, 1 (2002)

    Article  ADS  Google Scholar 

  66. H. Fukuta, Y. Murakami, Phys. Rev. E 57, 449 (1998)

    Article  ADS  Google Scholar 

  67. P. Meunier, T. Leweke, J. Fluid. Mech. 533, 125 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  68. K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Commun. Nonlin. Sci. Num. Simul. 17, 3658 (2012)

    Article  Google Scholar 

  69. M. Kapitaniak, K. Czolczynsk, P. Perlikowski, A. Stefanski, T. Kapitaniak, Phys. Rep. 541, 1 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  70. K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Int. J. Bifurc. Chaos 22, 1250128 (2012)

    Article  Google Scholar 

  71. G.N. Throumoulopoulos, H. Tasso, Phys. Plasmas 17, 032508 (2010)

    Article  ADS  Google Scholar 

  72. S. Thanvanthri, K.T. Kapale, J.P. Dowling, arXiv:0907.1138v1 (Quantum-Phy)

  73. K.T. Kapale, J.P. Dowling, Phys. Rev. Lett. 95, 173601 (2005)

    Article  ADS  Google Scholar 

  74. M. Tabor,Chaos and Integrability in Nonlinear Dynamics: An Introduction (John Wiley & Sons, New York, 1988)

  75. S.K. Bhowmick, D. Ghosh, S.K. Dana, Chaos 21, 033118 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  76. V. Dragoi, I. Grosu, Neural Process. Lett. 7, 199 (1998)

    Article  Google Scholar 

  77. H.A. Albuquerque, A. Hoff, C. Manchein, J.V. Santos, Eur. Phys. J. B 87, 151 (2014)

    Article  ADS  Google Scholar 

  78. B. Ermentrout,Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students (SIAM, Philadelphia, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumarasamy.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, V., Kumarasamy, S., Biswal, B. et al. Bifurcation delay, travelling waves and chimera-like states in a network of coupled oscillators. Eur. Phys. J. Spec. Top. 229, 2307–2325 (2020). https://doi.org/10.1140/epjst/e2020-900192-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-900192-x

Navigation