Skip to main content
Log in

Dirichlet-to-Neumann Maps on Trees

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper we study the Dirichlet-to-Neumann map for solutions to mean value formulas on trees. We give two alternative definition of the Dirichlet-to-Neumann map. For the first definition (that involves the product of a “gradient” with a “normal vector”) and for a linear mean value formula on the directed tree (taking into account only the successors of a given node) we obtain that the Dirichlet-to-Neumann map is given by \(g\mapsto cg^{\prime }\) (here c is an explicit constant). Notice that this is a local operator of order one. We also consider linear undirected mean value formulas (taking into account not only the successors but the ancestor and the successors of a given node) and prove a similar result. For this kind of mean value formula we include some existence and uniqueness results for the associated Dirichlet problem. Finally, we give an alternative definition of the Dirichlet-to-Neumann map (taking into account differences along a given branch of the tree). With this alternative definition, for a certain range of parameters, we obtain that the Dirichlet-to-Neumann map is given by a nonlocal operator (as happens for the classical Laplacian in the Euclidean space).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anandam, V.: Harmonic functions and potentials on finite or infinite networks. Lecture Notes of the Unione Matematica Italiana, 12. Springer, Heidelberg; UMI, Bologna, 2011 x + 141 pp

  2. Alvarez, V., Rodríguez, J.M., Yakubovich, D.V.: Estimates for nonlinear harmonic “measures” on trees. Michigan Math. J. 49(1), 47–64 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bjorn, A., Bjorn, J., Gill, J.T., Shanmugalingam, N.: Geometric analysis on Cantor sets and trees. J. Reine Angew. Math. 725, 63–114 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32(7-9), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  5. Calderon, A.P.: On an inverse boundary value problem. Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pp. 65–73, Soc. Brasil. Mat. Rio de Janeiro (1980)

  6. Del Pezzo, L.M., Mosquera, C.A., Rossi, J.D.: The unique continuation property for a nonlinear equation on trees. J. Lond. Math. Soc. (2) 89(2), 364–382 (2014)

    Article  MathSciNet  Google Scholar 

  7. Del Pezzo, L.M., Mosquera, C.A., Rossi, J.D.: Estimates for nonlinear harmonic measures on trees. Bull. Braz. Math. Soc. (N.S.) 45(3), 405–432 (2014)

    Article  MathSciNet  Google Scholar 

  8. Del Pezzo, L.M., Mosquera, C.A., Rossi, J.D.: Existence, uniqueness and decay rates for evolution equations on trees. Port. Math. 71(1), 63–77 (2014)

    Article  MathSciNet  Google Scholar 

  9. Hartenstine, D., Rudd, M.: Asymptotic statistical characterizations of p-harmonic functions of two variables, Rocky Mountain. J. Math. 41(2), 493–504 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Hartenstine, D., Rudd, M.: Statistical functional equations and p-harmonious functions. Adv. Nonlinear Stud. 13(1), 191–207 (2013)

    Article  MathSciNet  Google Scholar 

  11. Kesten, H.: Relations between solutions to a discrete and continuous Dirichlet problem. Random walks, Brownian motion, and interacting particle systems, 309–321, vol. 28. Progr Probab., Birkhäuser (1991)

    Google Scholar 

  12. Kaufman, R., Llorente, J.G., Wu, J.-M.: Nonlinear harmonic measures on trees. Ann. Acad. Sci. Fenn. Math. 28(2), 279–302 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Kaufman, R., Wu, J.-M.: Fatou theorem of p-harmonic functions on trees. Ann. Probab., 28 3, 1138–1148 (2000)

    Article  MathSciNet  Google Scholar 

  14. Manfredi, J.J., Parviainen, M., Rossi, J.D.: An asymptotic mean value characterization for p-harmonic functions. Procc. Am. Math. Soc. 138, 881–889 (2010)

    Article  MathSciNet  Google Scholar 

  15. Manfredi, J.J., Oberman, A., Sviridov, A.: Nonlinear elliptic PDEs on graphs. Differential Integral Equations 28(1-2), 79–102 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Oberman, A.: Finite difference methods for the infinity Laplace and p-Laplace equations. J. Comput. Appl. Math. 254, 65–80 (2013)

    Article  MathSciNet  Google Scholar 

  17. Oberman, A.: A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions. Math. Comp. 74(251), 1217–1230 (2005)

    Article  MathSciNet  Google Scholar 

  18. Rudd, M., Van Dyke, H.A.: Median values, 1-harmonic functions, and functions of least gradient. Commun. Pure Appl. Anal. 12(2), 711–719 (2013)

    Article  MathSciNet  Google Scholar 

  19. Sviridov, A.P.: Elliptic equations in graphs via stochastic games. Thesis (Ph.D.) University of Pittsburgh. ProQuest LLC, Ann Arbor, MI, pp 53 (2011)

  20. Sviridov, A.P.: p-harmonious functions with drift on graphs via games. Elect. J. Differential Equations 114, 11 (2011)

    MathSciNet  Google Scholar 

  21. Uhlmann, G.: Inverse problems: seeing the unseen. Bull. Math. Sci. 4, 209–279 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Supported by CONICET grant PIP GI No 11220150100036CO (Argentina), by UBACyT grant 20020160100155BA (Argentina) and by MINECO MTM2015-70227-P (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio D. Rossi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Pezzo, L.M., Frevenza, N. & Rossi, J.D. Dirichlet-to-Neumann Maps on Trees. Potential Anal 53, 1423–1447 (2020). https://doi.org/10.1007/s11118-019-09812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-019-09812-9

Keywords

Mathematics Subject Classification (2010)

Navigation