Skip to main content
Log in

Port-Hamiltonian flexible multibody dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A new formulation for the modular construction of flexible multibody systems is presented. By rearranging the equations for a flexible floating body and introducing the appropriate canonical momenta, the model is recast into a coupled system of ordinary and partial differential equations in port-Hamiltonian (pH) form. This approach relies on a floating frame description and is valid under the assumption of small deformations. This allows including mechanical models that cannot be easily formulated in terms of differential forms. Once a pH model is established, a finite element based method is then introduced to discretize the dynamics in a structure-preserving manner. Thanks to the features of the pH framework, complex multibody systems could be constructed in a modular way. Constraints are imposed at the velocity level, leading to an index 2 quasilinear differential-algebraic system. Numerical tests are carried out to assess the validity of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alazard, D., Perez, J.A., Cumer, C., Loquen, T.: Two-input two-output port model for mechanical systems. In: AIAA 2015-1778 (2015). https://doi.org/10.2514/6.2015-1778

    Chapter  Google Scholar 

  2. Andersson, C., Führer, C., Åkesson, J.: Assimulo: a unified framework for {ODE} solvers. Math. Comput. Simul. 116(0), 26–43 (2015). https://doi.org/10.1016/j.matcom.2015.04.007

    Article  MathSciNet  Google Scholar 

  3. Arnold, D., Lee, J.: Mixed methods for elastodynamics with weak symmetry. SIAM J. Numer. Anal. 52(6), 2743–2769 (2014). https://doi.org/10.1137/13095032X

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008)

    Article  Google Scholar 

  5. Beattie, C., Mehrmann, V., Xu, H., Zwart, H.: Linear port-Hamiltonian descriptor systems. Math. Control Signals Syst. 30(4), 17 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bremer, H.: Elastic Multibody Dynamics. Springer, Berlin (2008)

    Book  Google Scholar 

  7. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM, Philadelphia (1995). https://doi.org/10.1137/1.9781611971224

    Book  MATH  Google Scholar 

  8. Brugnoli, A., Alazard, D., Pommier-Budinger, V., Matignon, D.: Port-Hamiltonian formulation and symplectic discretization of plate models. Part I: Mindlin model for thick plates. Appl. Math. Model. 75, 940–960 (2019). https://doi.org/10.1016/j.apm.2019.04.035

    Article  MathSciNet  MATH  Google Scholar 

  9. Brugnoli, A., Alazard, D., Pommier-Budinger, V., Matignon, D.: Port-Hamiltonian formulation and symplectic discretization of plate models. Part II: Kirchhoff model for thin plates. Appl. Math. Model. 75, 961–981 (2019). https://doi.org/10.1016/j.apm.2019.04.036

    Article  MathSciNet  MATH  Google Scholar 

  10. Cardona, A.: Superelements modelling in flexible multibody dynamics. Multibody Syst. Dyn. 4(2), 245–266 (2000). https://doi.org/10.1023/A:1009875930232

    Article  MATH  Google Scholar 

  11. Cardoso-Ribeiro, F.L., Matignon, D., Lefèvre, L.: A partitioned finite element method for power-preserving discretization of open systems of conservation laws (2019). arXiv preprint arXiv:1906.05965. Under review

  12. Celledoni, E., Høiseth, E.H., Ramzina, N.: Passivity-preserving splitting methods for rigid body systems. Multibody Syst. Dyn. 44(3), 251–275 (2018)

    Article  MathSciNet  Google Scholar 

  13. Cervera, J., van der Schaft, A.J., Baños, A.: Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43(2), 212–225 (2007). https://doi.org/10.1016/j.automatica.2006.08.014

    Article  MathSciNet  MATH  Google Scholar 

  14. Chaturantabut, S., Beattie, C., Gugercin, S.: Structure-preserving model reduction for nonlinear port-Hamiltonian systems. SIAM J. Sci. Comput. 38(5), B837–B865 (2016). https://doi.org/10.1137/15M1055085

    Article  MathSciNet  MATH  Google Scholar 

  15. Chebbi, J., Dubanchet, V., Perez Gonzalez, J.A., Alazard, D.: Linear dynamics of flexible multibody systems. Multibody Syst. Dyn. 41(1), 75–100 (2017). https://doi.org/10.1007/s11044-016-9559-y

    Article  MathSciNet  MATH  Google Scholar 

  16. Cohen, G., Fauqueux, S.: Mixed spectral finite elements for the linear elasticity system in unbounded domains. SIAM J. Sci. Comput. 26(3), 864–884 (2005). https://doi.org/10.1137/S1064827502407457

    Article  MathSciNet  MATH  Google Scholar 

  17. Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H.: Modeling and Control of Complex Physical Systems. Springer, Berlin (2009). https://www.springer.com/us/book/9783642031953

    Book  Google Scholar 

  18. Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N., Mehrmann, V.: On structure-preserving model reduction for damped wave propagation in transport networks. SIAM J. Sci. Comput. 40(1), A331–A365 (2018). https://doi.org/10.1137/17M1125303

    Article  MathSciNet  MATH  Google Scholar 

  19. Ellenbroek, M., Schilder, J.: On the use of absolute interface coordinates in the floating frame of reference formulation for flexible multibody dynamics. Multibody Syst. Dyn. 43(3), 193–208 (2018). https://doi.org/10.1007/s11044-017-9606-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Forni, P., Jeltsema, D., Lopes, G.A.: Port-Hamiltonian formulation of rigid-body attitude control. IFAC-PapersOnLine 48(13), 164–169 (2015). https://doi.org/10.1016/j.ifacol.2015.10.233. 5th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2015

    Article  Google Scholar 

  21. Golo, G., Talasila, V., van der Schaft, A.J., Maschke, B.: Hamiltonian discretization of boundary control systems. Automatica 40(5), 757–771 (2004). https://doi.org/10.1016/j.automatica.2003.12.017

    Article  MathSciNet  MATH  Google Scholar 

  22. Holm, D.D.: Geometric Mechanics: Part II: Rotating, Translating and Rolling. World Scientific, Singapore (2008)

    Book  Google Scholar 

  23. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  24. Hurty, W.C.: Dynamic analysis of structural systems using component modes. AIAA J. 3(4), 678–685 (1965). https://doi.org/10.2514/3.2947

    Article  Google Scholar 

  25. Kitis, L., Lindenberg, R.: Natural frequencies and mode shapes of flexible mechanisms by a transfer matrix method. Finite Elem. Anal. Des. 6(4), 267–285 (1990). https://doi.org/10.1016/0168-874X(90)90020-F

    Article  MATH  Google Scholar 

  26. Klerk, D.D., Rixen, D.J., Voormeeren, S.N.: General framework for dynamic substructuring: history, review and classification of techniques. AIAA J. 46(5), 1169–1181 (2008). https://doi.org/10.2514/1.33274

    Article  Google Scholar 

  27. Kotyczka, P., Lefèvre, L.: Discrete-time port-Hamiltonian systems: a definition based on symplectic integration. Syst. Control Lett. 133, 104530 (2019). https://doi.org/10.1016/j.sysconle.2019.104530

    Article  MathSciNet  MATH  Google Scholar 

  28. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2008)

    Article  Google Scholar 

  29. Leyendecker, S., Betsch, P., Steinmann, P.: The discrete null space method for the energy-consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics. Multibody Syst. Dyn. 19(1), 45–72 (2008). https://doi.org/10.1007/s11044-007-9056-4

    Article  MathSciNet  MATH  Google Scholar 

  30. Macchelli, A., Melchiorri, C., Stramigioli, S.: Port-based modeling of a flexible link. IEEE Trans. Robot. 23, 650–660 (2007). https://doi.org/10.1109/TRO.2007.898990

    Article  Google Scholar 

  31. Macchelli, A., Melchiorri, C., Stramigioli, S.: Port-based modeling and simulation of mechanical systems with rigid and flexible links. IEEE Trans. Robot. 25(5), 1016–1029 (2009). https://doi.org/10.1109/TRO.2009.2026504

    Article  Google Scholar 

  32. Marsden, J.E.: Lectures on Geometric Methods in Mathematical Physics. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1981)

    Book  Google Scholar 

  33. Mehrmann, V., Morandin, R.: Structure-preserving discretization for port-Hamiltonian descriptor systems. In: Proceedings of the 59th IEEE Conference on Decision and Control, pp. 6663–6868 (2019)

    Google Scholar 

  34. Nageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuška, R.: Port-Hamiltonian systems in adaptive and learning control: a survey. IEEE Trans. Autom. Control 61(5), 1223–1238 (2016). https://doi.org/10.1109/TAC.2015.2458491

    Article  MathSciNet  MATH  Google Scholar 

  35. Nowakowski, C., Fehr, J., Fischer, M., Eberhard, P.: Model order reduction in elastic multibody systems using the floating frame of reference formulation. IFAC Proc. Vol. 45(2), 40–48 (2012). https://doi.org/10.3182/20120215-3-AT-3016.00007. 7th Vienna International Conference on Mathematical Modelling

    Article  Google Scholar 

  36. Ortega, R., García-Canseco, E.: Interconnection and damping assignment passivity-based control: a survey. Eur. J. Control 10(5), 432–450 (2004)

    Article  MathSciNet  Google Scholar 

  37. Perez, J.A., Alazard, D., Loquen, T., Pittet, C., Cumer, C.: Flexible multibody system linear modeling for control using component modes synthesis and double-port approach. J. Dyn. Syst. Meas. Control 138(12), 121004 (2016). https://doi.org/10.1115/1.4034149

    Article  Google Scholar 

  38. Rathgeber, F., Ham, D., Mitchell, L., Lange, M., Luporini, F., McRae, A.T., Bercea, G., Markall, G.R., Kelly, P.: Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. 43(3), 24 (2017)

    Article  MathSciNet  Google Scholar 

  39. Rong, B., Rui, X., Tao, L., Wang, G.: Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dyn. 98(2), 1519–1553 (2019). https://doi.org/10.1007/s11071-019-05191-3

    Article  Google Scholar 

  40. Rui, X., He, B., Lu, Y., Lu, W., Wang, G.: Discrete time transfer matrix method for multibody system dynamics. Multibody Syst. Dyn. 14(3), 317–344 (2005). https://doi.org/10.1007/s11044-005-5006-1

    Article  MathSciNet  MATH  Google Scholar 

  41. Sanfedino, F., Alazard, D., Pommier-Budinger, V., Falcoz, A., Boquet, F.: Finite element based N-port model for preliminary design of multibody systems. J. Sound Vib. 415, 128–146 (2018). https://doi.org/10.1016/j.jsv.2017.11.021

    Article  Google Scholar 

  42. van der Schaft, A.: L2-Gain and Passivity Techniques in Nonlinear Control, vol. 2. Springer, Berlin (2000)

    Book  Google Scholar 

  43. Scholz, L.: Condensed forms for linear port-Hamiltonian descriptor systems. Electron. J. Linear Algebra 35, 65–89 (2019). https://doi.org/10.13001/1081-3810.3638

    Article  MathSciNet  MATH  Google Scholar 

  44. Simeon, B.: DAEs and PDEs in elastic multibody systems. Numer. Algorithms 19(1), 235–246 (1998). https://doi.org/10.1023/A:1019118809892

    Article  MathSciNet  MATH  Google Scholar 

  45. Simeon, B.: Computational Flexible Multibody Dynamics. Springer, Berlin (2013)

    Book  Google Scholar 

  46. Steinbrecher, A.: Numerical solution of quasi-linear differential-algebraic equations and industrial simulation of multibody systems. PhD thesis, TU Berlin (2006). https://doi.org/10.14279/depositonce-1360

  47. Tan, T., Yousuff, A., Bahar, L., Konstantinidis, M.: A modified finite element-transfer matrix for control design of space structures. Comput. Struct. 36(1), 47–55 (1990). https://doi.org/10.1016/0045-7949(90)90173-Y

    Article  MATH  Google Scholar 

  48. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003). https://doi.org/10.1115/1.1590354

    Article  Google Scholar 

  49. Young, K.D.: Distributed finite-element modeling and control approach for large flexible structures. J. Guid. Control Dyn. 13(4), 703–713 (1990). https://doi.org/10.2514/3.25389

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Brugnoli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the project ANR-16-CE92-0028, entitled Interconnected Infinite-Dimensional systems for Heterogeneous Media, INFIDHEM, financed by the French National Research Agency (ANR) and the Deutsche Forschungsgemeinschaft (DFG). Further information is available at https://websites.isae-supaero.fr/infidhem/the-project.

Appendices

Appendix A: Mathematical tools

We recall here some identities and definitions that will be used throughout the paper.

1.1 A.1 Properties of the cross-product

We denote by \(\widetilde{\left [\boldsymbol{a}\right ]}\) the skew-symmetric map associated to vector \(\boldsymbol{a} = [a_{x}, a_{y}, a_{z}]^{\top }\), that is,

$$ \widetilde{\left [\boldsymbol{a}\right ]} = \begin{bmatrix} 0 & -a_{z} & a_{y} \\ a_{z} & 0 & -a_{x} \\ -a_{y} & a_{x} & 0 \\ \end{bmatrix} .$$
(52)

This map allows rewriting the cross-product as a matrix–vector product \(\boldsymbol{a}\wedge \boldsymbol{b} = \widetilde{\left [\boldsymbol{a}\right ]}\boldsymbol{b}\). The cross-product satisfies the anticommutativity property

$$ \widetilde{\left [\boldsymbol{a}\right ]} \boldsymbol{b} = - \widetilde{\left [\boldsymbol{b}\right ]} \boldsymbol{a}, \qquad \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{3}. $$
(53)

Furthermore, it satisfies the Jacobi Identity

$$ \widetilde{\left [\boldsymbol{a}\right ]} \widetilde{\left [\boldsymbol{b}\right ]} \boldsymbol{c} + \widetilde{\left [\boldsymbol{b}\right ]} \widetilde{\left [\boldsymbol{c}\right ]} \boldsymbol{a} + \widetilde{\left [\boldsymbol{c}\right ]} \widetilde{\left [\boldsymbol{a}\right ]} \boldsymbol{b} = 0, \qquad \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^{3}. $$
(54)

1.2 A.2 Adjoint of operators

In this paper, the adjoint of an operator is used. We recall the necessary definitions.

Definition 1

Given a linear operator \(\mathcal{A}: \mathscr{H}^{1} \rightarrow \mathscr{H}^{2}\) between Hilbert spaces, the adjoint \(\mathcal{A}^{*}:\mathscr{H}^{2}\rightarrow \mathscr{H}^{1}\) fulfills

$$ \langle y, \mathcal{A}x \rangle _{\mathscr{H}^{2}} = \langle \mathcal{A}^{*} y, x \rangle _{\mathscr{H}^{1}}, \qquad x \in \mathscr{H}^{1}, y \in \mathscr{H}^{2}. $$
(55)

To illustrate this definition, consider the operator \(\mathcal{I}^{\Omega }= \int _{\Omega }(\cdot ) \;\mathrm{d}\Omega : \mathscr{L}^{2}(\Omega , \mathbb{R}^{3}) \rightarrow \mathbb{R}^{3}\). Given a function \(\boldsymbol{u} \in \mathscr{L}^{2}(\Omega , \mathbb{R}^{3})\) and a vector \(\boldsymbol{v} \in \mathbb{R}^{3}\), the adjoint operator \((\mathcal{I}^{\Omega })^{*}\) extends the vector \(\boldsymbol{v}\) as a constant vector field over \(\Omega \),

$$ \langle \boldsymbol{v}, \mathcal{I}^{\Omega }\boldsymbol{u} \rangle _{\mathbb{R}^{3}} = \langle (\mathcal{I}^{\Omega })^{*} \boldsymbol{v}, \boldsymbol{u} \rangle _{ \mathscr{L}^{2}(\Omega , \mathbb{R}^{3})}. $$

Definition 2

A linear bounded operator \(\mathcal{A}: \mathscr{H} \rightarrow \mathscr{H}\) is self-adjoint if

$$ \langle y, \mathcal{A}x \rangle _{\mathscr{H}} = \langle \mathcal{A} y, x \rangle _{\mathscr{H}}, \qquad x, y \in \mathscr{H}. $$
(56)

Definition 3

A linear bounded operator \(\mathcal{A}: \mathscr{H} \rightarrow \mathscr{H}\) is skew-adjoint if

$$ \langle y, \mathcal{A}x \rangle _{\mathscr{H}} = -\langle \mathcal{A} y, x \rangle _{\mathscr{H}}, \qquad x, y \in \mathscr{H}. $$
(57)

Indeed, the differential operators that appear in \(\boldsymbol{\mathcal{J}}\) (\(\operatorname{Div} , \operatorname{Grad} \)) are unbounded in the \(\mathscr{L}^{2}\) topology. Whenever unbounded operators are considered, it is important to define their domain. To avoid the need of specifying domains, the notion of formal (or essential) adjoint can be evoked. The formal adjoint respects the integration by parts formula and is defined only for sufficiently smooth functions with compact support. In this sense \(\operatorname{Div} , \operatorname{Grad} \) are formally skew-adjoint, since for smooth functions with compact support, it holds

$$ \left \langle y, \, \operatorname{Grad} (x) \right \rangle _{\mathscr{L}^{2}( \Omega , \mathbb{R}^{3\times 3}_{\text{sym}})} \underbrace{=}_{ \text{I.B.P.}} -\left \langle \operatorname{Div} (y), \, x \right \rangle _{ \mathscr{L}^{2}(\Omega , \mathbb{R}^{3})}. $$

The definition of the domain of the operators, which requires the knowledge of the boundary conditions, has not been specified. For this reason, the \(\boldsymbol{\mathcal{J}}\) operator is said to be formally skew-adjoint (or simply skew-symmetric).

1.3 A.3 Index of a differential-algebraic system

When dealing with differential-algebraic systems, an important notion is the index.

Definition 4

The index of a DAE is the minimum number of differentiation steps required to transform a DAE into an ODE.

Because of their structure, pH multibody systems are of index 2. Consider for simplicity a generic linear pH multibody system whose equations are

$$ \begin{aligned} \mathbf{M} \dot{\mathbf{e}} &= \mathbf{J}\mathbf{e} + \mathbf{G}^{\top }\boldsymbol{\lambda } + \mathbf{B}\mathbf{u}, \\ 0 &= -\mathbf{G}\mathbf{e}. \end{aligned} $$

Matrix \(\mathbf{M}\) is squared and invertible and matrix \(\mathbf{G}\) is of full row rank. If the second equation is derived twice in time, then

$$ \dot{\boldsymbol{\lambda }} = - (\mathbf{G} \mathbf{M}^{-1} \mathbf{G}^{\top })^{-1} \mathbf{G} \mathbf{M}^{-1} (\mathbf{J} \dot{\mathbf{e}} + \mathbf{B} \dot{\mathbf{u}}). $$

Therefore, the system index is 2.

Appendix B: Detailed derivation of the equation of motions

The detailed derivation of the pH system (12) is presented here. We stick to the notation adopted along the paper. First, let us recall the equations for a floating flexible body reported in [44, 45].

  • Linear momentum balance:

    $$ \begin{aligned} &m ^{i}\ddot{\boldsymbol{r}}_{P} + \boldsymbol{R} \widetilde{\left [\boldsymbol{s}_{u}\right ]}^{\top }\dot{\boldsymbol{\omega }}_{P} + \boldsymbol{R} \int _{\Omega } \rho \ddot{\boldsymbol{u}}_{f} \;\mathrm{d}{\Omega } = \\ &\quad + \boldsymbol{R} \left \{ - \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \boldsymbol{s}_{u} - \int _{\Omega } 2 \rho \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \dot{\boldsymbol{u}}_{f} \;\mathrm{d}{\Omega } + \int _{\Omega } \boldsymbol{\beta }\;\mathrm{d}{\Omega } + \int _{\partial \Omega } \boldsymbol{\tau }\;\mathrm{d}{\Gamma } \right \} \end{aligned} $$
    (58)
  • Angular momentum balance:

    $$ \begin{aligned} \widetilde{\left [\boldsymbol{s}_{u}\right ]} { \boldsymbol{R}^{\top }} \ ^{i}\ddot{\boldsymbol{r}}_{P} + \boldsymbol{J}_{u} \dot{\boldsymbol{\omega }}_{P} + \int _{\Omega } \rho \widetilde{\left [\boldsymbol{x}_{f}\right ]} \ddot{\boldsymbol{u}}_{f} \;\mathrm{d}{\Omega } + \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \boldsymbol{J}_{u} \boldsymbol{\omega }_{P} = \\ - \int _{\Omega } 2\rho \widetilde{\left [\boldsymbol{x}_{f}\right ]} \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \dot{\boldsymbol{u}}_{f} \;\mathrm{d}{\Omega } + \int _{\Omega } \widetilde{\left [\boldsymbol{x}_{f}\right ]} \boldsymbol{\beta }\;\mathrm{d}{\Omega } + \int _{\partial \Omega } \widetilde{\left [\boldsymbol{x}_{f}\right ]} \boldsymbol{\tau }\;\mathrm{d}{\Gamma } \end{aligned} $$
    (59)
  • Flexibility PDE:

    $$ \rho {\boldsymbol{R}^{\top }} \ ^{i}\ddot{\boldsymbol{r}}_{P} + \rho ( \widetilde{\left [\dot{\boldsymbol{\omega }}_{P}\right ]} + \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \widetilde{\left [\boldsymbol{\omega }_{P}\right ]})\boldsymbol{x}_{f} + \rho (2 \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \dot{\boldsymbol{u}}_{f} + \ddot{\boldsymbol{u}}_{f}) = \operatorname{Div}{\boldsymbol{\Sigma }} + \boldsymbol{\beta }, $$
    (60)

The first two equations are written in the inertial frame and so they need to be projected in the body frame. Considering that the position of point \(P\), i.e., \({}^{i}{\boldsymbol{r}}_{P}\), is computed in the inertial frame and \(\boldsymbol{v}_{P}\) in the body frame, one has \({}^{i}\dot{\boldsymbol{r}}_{P} = \boldsymbol{R} \boldsymbol{v}_{P}\). Taking the derivative of this gives

$$ ^{i}\ddot{\boldsymbol{r}}_{P} = \boldsymbol{R} \left (\dot{\boldsymbol{v}}_{P} + \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \boldsymbol{v}_{P} \right ) .$$
(61)

Substituting (61) into (58), (59), (60) and premultiplying (58) by \(\boldsymbol{R}^{\top }\), Eqs. (1) (2), and (3) are obtained.

  • Linear momentum balance:

    $$ \begin{aligned} &m (\dot{\boldsymbol{v}}_{P} + \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \boldsymbol{v}_{P}) + \widetilde{\left [\boldsymbol{s}_{u}\right ]}^{\top }\dot{\boldsymbol{\omega }}_{P} + \int _{\Omega } \rho \dot{\boldsymbol{v}}_{f} \;\mathrm{d}{\Omega } = \\ &\quad - \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \boldsymbol{s}_{u} - \int _{\Omega } 2 \rho \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} {\boldsymbol{v}}_{f} \;\mathrm{d}{\Omega } + \int _{\Omega } \boldsymbol{\beta }\;\mathrm{d}{\Omega } + \int _{ \partial \Omega } \boldsymbol{\tau }\;\mathrm{d}{\Gamma }. \end{aligned} $$
    (62)
  • Angular momentum balance:

    $$ \begin{aligned} \widetilde{\left [\boldsymbol{s}_{u}\right ]} ( \dot{\boldsymbol{v}}_{P} + \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \boldsymbol{v}_{P}) + \boldsymbol{J}_{u} \dot{\boldsymbol{\omega }}_{P} + \int _{\Omega } \rho \widetilde{\left [\boldsymbol{x}_{f}\right ]} \dot{\boldsymbol{v}}_{f} \;\mathrm{d}{\Omega } + \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \boldsymbol{J}_{u} \boldsymbol{\omega }_{P} = \\ - \int _{\Omega } 2\rho \widetilde{\left [\boldsymbol{x}_{f}\right ]} \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} {\boldsymbol{v}}_{f} \;\mathrm{d}{\Omega } + \int _{\Omega } \widetilde{\left [\boldsymbol{x}_{f}\right ]} \boldsymbol{\beta }\;\mathrm{d}{\Omega } + \int _{\partial \Omega } \widetilde{\left [\boldsymbol{x}_{f}\right ]} \boldsymbol{\tau }\;\mathrm{d}{\Gamma }. \end{aligned} $$
    (63)
  • Flexibility PDE:

    $$ \begin{aligned} \rho (\dot{\boldsymbol{v}}_{P} + \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \boldsymbol{v}_{P}) + \rho ( \widetilde{\left [\dot{\boldsymbol{\omega }}_{P}\right ]} + \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \widetilde{\left [\boldsymbol{\omega }_{P}\right ]})(\boldsymbol{x}_{f}) + \rho (2 \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} { \boldsymbol{v}}_{f} + \dot{\boldsymbol{v}}_{f}) = \\ \operatorname{Div}{\boldsymbol{\Sigma }} + \boldsymbol{\beta }, \end{aligned} $$
    (64)

    where \(\boldsymbol{v}_{f} = \dot{\boldsymbol{u}}_{f}\).

Consider now the term \(\widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \boldsymbol{s}_{u}\), appearing in (62). Using the anticommutativity (53) and the fact that the cross-map is skew-symmetric, i.e., \(\widetilde{\left [\boldsymbol{a}\right ]} = - \widetilde{\left [\boldsymbol{a}\right ]}^{\top }\), one finds

$$\begin{aligned} -\widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \boldsymbol{s}_{u} = \widetilde{\left [\widetilde{\left [\boldsymbol{s}_{u}\right ]}^{\top }\boldsymbol{\omega }_{P}\right ]} \boldsymbol{\omega }_{P}. \end{aligned}$$

Equation (62) is then rewritten as

$$ \begin{aligned} m\dot{\boldsymbol{v}}_{P} + \widetilde{\left [\boldsymbol{s}_{u}\right ]}^{\top }\dot{\boldsymbol{\omega }}_{P} + \int _{\Omega } \rho \dot{\boldsymbol{v}}_{f} \;\mathrm{d}{\Omega } = \\ \left [m \widetilde{\left [\boldsymbol{v}_{P}\right ]} + \widetilde{\left [\widetilde{\left [\boldsymbol{s}_{u}\right ]}^{\top }\boldsymbol{\omega }_{P}\right ]} +2 \int _{\Omega } \rho \widetilde{\left [\boldsymbol{v}_{f}\right ]} \;\mathrm{d}{\Omega } \right ] \boldsymbol{\omega }_{P} + \int _{\Omega } \boldsymbol{\beta }\;\mathrm{d}{\Omega } + \int _{\partial \Omega } \boldsymbol{\tau }\;\mathrm{d}{\Gamma }. \end{aligned} $$
(65)

The terms \(\widetilde{\left [\boldsymbol{s}_{u}\right ]} \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \boldsymbol{v}_{P}, \; 2\rho \widetilde{\left [\boldsymbol{x}_{f}\right ]} \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} {\boldsymbol{v}}_{f}\), appearing in (63), can be rewritten using the Jacobi identity (54) as

$$\begin{aligned} \widetilde{\left [\boldsymbol{s}_{u}\right ]} \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} \boldsymbol{v}_{P} &= - \widetilde{\left [\widetilde{\left [\boldsymbol{s}_{u}\right ]} \boldsymbol{v}_{P}\right ]} \boldsymbol{\omega }_{P} - \widetilde{\left [\widetilde{\left [\boldsymbol{s}_{u}\right ]}^{\top }\boldsymbol{\omega }_{P}\right ]} \boldsymbol{v}_{P}, \end{aligned}$$
(66)
$$\begin{aligned} 2\rho \widetilde{\left [\boldsymbol{x}_{f}\right ]} \widetilde{\left [\boldsymbol{\omega }_{P}\right ]} {\boldsymbol{v}}_{f} &= - 2\rho \widetilde{\left [\widetilde{\left [\boldsymbol{x}_{f}\right ]} \boldsymbol{v}_{f}\right ]} \boldsymbol{\omega }_{P} - 2\rho \widetilde{\left [\widetilde{\left [\boldsymbol{x}_{f}\right ]}^{\top }\boldsymbol{\omega }_{P}\right ]} \boldsymbol{v}_{f}. \end{aligned}$$
(67)

Equation (63) is then rewritten as

$$ \begin{aligned} \widetilde{\left [\boldsymbol{s}_{u}\right ]} \dot{\boldsymbol{v}}_{P} + \boldsymbol{J}_{u} \dot{\boldsymbol{\omega }}_{P} + \int _{\Omega } \rho \widetilde{\left [\boldsymbol{x}_{f}\right ]} \dot{\boldsymbol{v}}_{f} \;\mathrm{d}{\Omega } = \\ \left [ \widetilde{\left [\widetilde{\left [\boldsymbol{s}_{u}\right ]}^{\top }\boldsymbol{\omega }_{P}\right ]} + 2 \int _{\Omega } \rho \widetilde{\left [\boldsymbol{v}_{f}\right ]} \;\mathrm{d}{\Omega } \right ] \boldsymbol{v}_{P} + \left [ \widetilde{\left [\widetilde{\left [\boldsymbol{s}_{u}\right ]} \boldsymbol{v}_{P}\right ]} + \widetilde{\left [\boldsymbol{J}_{u} \boldsymbol{\omega }_{P}\right ]} + 2 \int _{\Omega } \rho \widetilde{\left [\widetilde{\left [\boldsymbol{x}_{f}\right ]} {\boldsymbol{v}}_{f}\right ]} \;\mathrm{d}{\Omega } \right ]\boldsymbol{\omega }_{P} + \\ 2 \int _{\Omega } \left [\rho \widetilde{\left [\boldsymbol{v}_{P}\right ]} + \rho \widetilde{\left [\widetilde{\left [\boldsymbol{x}_{f}\right ]}^{\top }\, \boldsymbol{\omega }_{P}\right ]} \right ] \boldsymbol{v}_{f} \;\mathrm{d}{\Omega } + \int _{\Omega } \widetilde{\left [\boldsymbol{x}_{f}\right ]} \boldsymbol{\beta }\;\mathrm{d}{\Omega } + \int _{\partial \Omega } \widetilde{\left [\boldsymbol{x}_{f}\right ]} \boldsymbol{\tau } \;\mathrm{d}{\Gamma }. \end{aligned} $$
(68)

Notice that \(2 \widetilde{\left [\boldsymbol{v}_{f}\right ]}\boldsymbol{v}_{P} + 2 \widetilde{\left [\boldsymbol{v}_{P}\right ]}\boldsymbol{v}_{f} = 0\). Using again the anticommutativity, Eq. (64) is expressed as

$$ \begin{aligned} \rho \dot{\boldsymbol{v}}_{P} + \rho \widetilde{\left [\boldsymbol{x}_{f}\right ]}^{\top }\dot{\boldsymbol{\omega }}_{P} + \rho \dot{\boldsymbol{v}}_{f} = \\ \left [\rho \widetilde{\left [\boldsymbol{v}_{P}\right ]} + \rho \widetilde{\left [\widetilde{\left [\boldsymbol{x}_{f}\right ]}^{\top }\boldsymbol{\omega }_{P}\right ]} + 2 \rho \widetilde{\left [\boldsymbol{v}_{f}\right ]} \right ] \boldsymbol{\omega }_{P} + \operatorname{Div}{\boldsymbol{\Sigma }} + \boldsymbol{\beta }. \end{aligned} $$
(69)

Indeed, Eqs. (65), (68), (69) are exactly (5), (6), (7). Now by definitions (13), (14),

$$\begin{aligned} \widehat{\boldsymbol{p}}_{t} &= m \boldsymbol{v}_{P} + \widetilde{\left [\boldsymbol{s}_{u}\right ]}^{\top }\boldsymbol{\omega }_{P} +2 \int _{\Omega } \rho \boldsymbol{v}_{f} \;\mathrm{d}{\Omega }, \\ \widehat{\boldsymbol{p}}_{r} &= \widetilde{\left [\boldsymbol{s}_{u}\right ]} \boldsymbol{v}_{P} + \boldsymbol{J}_{u} \boldsymbol{\omega }_{P} + 2 \int _{\Omega } \rho \widetilde{\left [\boldsymbol{x}_{f}\right ]} {\boldsymbol{v}}_{f} \;\mathrm{d}{\Omega }, \\ \boldsymbol{\mathcal{I}}_{p_{f}}^{\Omega }(\cdot ) &= \int _{\Omega } \left [ 2 \left (\rho \widetilde{\left [\boldsymbol{v}_{P}\right ]} + \rho \widetilde{\left [\widetilde{\left [\boldsymbol{x}_{f}\right ]}^{\top }\, \boldsymbol{\omega }_{P}\right ]} +\rho \widetilde{\left [\boldsymbol{v}_{f}\right ]}\right ) + \rho \widetilde{\left [\boldsymbol{v}_{f}\right ]} \right ] ( \cdot ) \;\mathrm{d}{\Omega }. \end{aligned}$$

Equations (58), (59), (60) are written as

$$ \boldsymbol{\mathcal{M}} \frac{d}{dt} \begin{bmatrix} \boldsymbol{v}_{P} \\ \boldsymbol{\omega }_{P} \\ \boldsymbol{v}_{f} \\ \boldsymbol{\Sigma }\\ \end{bmatrix} = \begin{bmatrix} 0 & \widetilde{\left [\widehat{\boldsymbol{p}}_{t}\right ]} & 0 & 0 \\ \widetilde{\left [\widehat{\boldsymbol{p}}_{t}\right ]} & \widetilde{\left [\widehat{\boldsymbol{p}}_{r}\right ]} & \boldsymbol{\mathcal{I}}_{p_{f}}^{\Omega }& 0 \\ 0 & -(\boldsymbol{\mathcal{I}}_{p_{f}}^{\Omega })^{*} & 0 & \operatorname{Div} \\ 0 & 0 & \operatorname{Grad} & 0 \\ \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_{P} \\ \boldsymbol{\omega }_{P} \\ \boldsymbol{v}_{f} \\ \boldsymbol{\Sigma }\\ \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ \delta _{\boldsymbol{u}_{f}}H \\ 0 \\ \end{bmatrix}, $$
(70)

with

Hence, it is clear that Eqs. (58), (59), (60) from [44, 45] are equivalently recast in the form (12).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brugnoli, A., Alazard, D., Pommier-Budinger, V. et al. Port-Hamiltonian flexible multibody dynamics. Multibody Syst Dyn 51, 343–375 (2021). https://doi.org/10.1007/s11044-020-09758-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09758-6

Keywords

Navigation