Skip to main content
Log in

Performance evaluation of nano-silica and silica fume on enhancing acid resistance of cement-based composites for underground structures

硅粉与纳米硅粉水泥基材料的耐酸性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This study aims to evaluate the performance of silica fume (SF) and nano-silica (NS) on enhancing the sulfuric acid resistance of mortar mixtures. The NS and SF were added as substitutions for cement at various dosages. The cured samples were immersed in the sulfuric acid solution with a pH of 2 for 75 d. A compressive strength test and absorption and voids tests were conducted before sulfuric acid immersion. It was found that the addition of SF and NS reduced the volume of permeable voids and increased compressive strength. A thermo-gravimetric analysis was carried out to investigate the hydration of mixtures. The mixtures with SF showed a higher level of pozzolanic reaction compared with mixtures with NS. After the 75 d of immersion, the mixtures with 5% SF and 1% NS showed the best resistance against sulfuric acid because they showed the lowest mass change and length change.

摘要

为了研究硅粉与纳米硅粉作为添加剂对水泥砂浆耐酸性的影响, 本文将标准养护后的样品浸泡于 pH=2 的硫酸溶液中, 并分析了样品在浸泡实验前后的性能变化. 实验结果表明, 添加硅粉及纳米硅粉能有效提高浸泡前水泥砂浆的单轴抗压强度, 降低可渗透孔隙的体积率. 相较于纳米硅粉, 硅粉对水泥砂浆的性能影响更为显著. 在硫酸溶液中浸泡 75 d 后, 样品出现了不同程度的腐蚀. 其中, 掺 5%硅粉及 1%纳米硅粉的样品展现了最低的质量损失及长度损失.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DORION J F, HADJIGEORGIOU J. Microbiologically influenced corrosion (MIC) of ground support [J]. Geotechnical and Geological Engineering, 2020, 38(1): 375–387. DOI: https://doi.org/10.1007/s10706-019-01028-3.

    Google Scholar 

  2. WU L, HU C, LIU V W. The sustainability of concrete in sewer tunnel—A narrative review of acid corrosion in the city of Edmonton, Canada [J]. Sustainability, 2018, 10(2). DOI: https://doi.org/10.3390/su10020517.

    Google Scholar 

  3. CARATELLI A, MEDA A, RINALDI Z, ROMUALDI P, Structural behaviour of precast tunnel segments in fiber reinforced concrete [J]. Tunnelling and Underground Space Technology, 2011. 26(2): 284–291. DOI: https://doi.org/10.1016/j.tust.2010.10.003.

    Google Scholar 

  4. YU H, WU L, LIU W, POURRAHIMIAN Y. Effects of fibers on expansive shotcrete mixtures consisting of calcium sulfoaluminate cement, ordinary Portland cement, and calcium sulfate [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(2): 212–221. DOI: https://doi.org/10.1016/j.jrmge.2017.12.001.

    Google Scholar 

  5. ERGÜLER G K. Investigation the applicability of eggshell for the treatment of a contaminated mining site [J]. Minerals Engineering, 2015, 76: 10–19. DOI: https://doi.org/10.1016/j.mineng.2015.02.002.

    Google Scholar 

  6. JONES S N, CETIN B. Remediation of acid mine drainages with recycled concrete aggregates [J]. Geotechnical Frontiers, 2017, 2017. DOI: https://doi.org/10.1061/9780784480434.049.

  7. JEON I K, QUDOOS A, JAKHRANI S H, KIM H G, RYOU J S. Investigation of sulfuric acid attack upon cement mortars containing silicon carbide powder [J]. Powder Technology, 2020, 359: 181–189. DOI: https://doi.org/10.1016/j.powtec.2019.10.026.

    Google Scholar 

  8. LI J, ZHANG T, LIU T. Corrosion of cement-based support system by acidic water in a deep copper mine [J]. Mordern Mining, 2018(591): 226–229. (in Chinese)

  9. KAUFMANN J. Durability performance of fiber reinforced shotcrete in aggressive environment [C]// World Tunnelling Congress. 2014: Foz do Iguaçu, Brazil. p. 7.

  10. EKOLU S O, DIOP S, AZENE F, MKHIZE N. Disintegration of concrete construction induced by acid mine drainage attack [J]. Journal of the South African Institution of Civil Engineers, 2016, 58(1): 34–42. DOI: https://doi.org/10.17159/2309-8775/2016/v58n1a4.

    Google Scholar 

  11. ERCIKDI B, KESIMAL A, CIHANGIR F, DEVECI H, ALP 1. Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage [J]. Cement and Concrete Composites, 2009. 31(4): 268–274. DOI: https://doi.org/10.1016/j.cemconcomp.2009.01.008.

    Google Scholar 

  12. YIN S, SHAO Y, WU A, RAO Y, CHEN X. Deformation behaviors of cemented backfill using sulphide-content tailings [C]// Proceedings of the 20th International Seminar on Paste and Thickened Tailings, 2017. Beijing: University of Science and Technology Beijing, 315–327. DOI: https://doi.org/10.36487/ACG_REP/1752_35_YIN.

    Google Scholar 

  13. TARIQ A, YANFUL E K. A review of binders used in cemented paste tailings for underground and surface disposal practices [J]. Journal of Environmental Management, 2013, 131: 138–149. DOI: https://doi.org/10.1016/j.jenvman.2013.09.039.

    Google Scholar 

  14. HAGELIA P. Durability development in sprayed concrete for rock support; Is it possible to establish a basis for modelling? [J]. Heron, 2019, 64(1/2): 75.

    Google Scholar 

  15. TORII K, KAWAMURA M. Effects of fly ash and silica fume on the resistance of mortar to sulfuric acid and sulfate attack [J]. Cement and Concrete Research, 1994, 24(2): 361–370. DOI: https://doi.org/10.1016/0008-8846(94)90063-9.

    Google Scholar 

  16. MEHTA P. Studies on chemical resistance of low water/cement ratio concretes [J]. Cement and Concrete Research, 1985, 15(6): 969–978. DOI: https://doi.org/10.1016/0008-8846(85)90087-0.

    Google Scholar 

  17. WU L, HU C, LIU W V. Effects of pozzolans on acid resistance of shotcrete for sewer tunnel rehabilitation [J]. Journal of Sustainable Cement-Based Materials, 2019, 8(1): 55–77. DOI: https://doi.org/10.1080/21650373.2018.1519645.

    Google Scholar 

  18. MEHTA P K. Properties of blended cements made from rice husk ash [J]. Journal of the American Concrete Institute, 1977, 74(9): 440–442. DOI: https://doi.org/10.14359/11022.

    Google Scholar 

  19. GUTBERLET T, HILBIG H, BEDDOE R. Acid attack on hydrated cement—Effect of mineral acids on the degradation process [J]. Cement and Concrete Research, 2015, 74: 35–43. DOI: https://doi.org/10.1016/j.cemconres.2015.03.011.

    Google Scholar 

  20. AMIN M, BASSUONI M T. Response of concrete with blended binders and nanoparticles to sulfuric acid attack [J]. Magazine of Concrete Research, 2017, 70(12): 617–632. DOI: https://doi.org/10.1680/jmacr.17.00081.

    Google Scholar 

  21. DUAN P, SHUI Z, CHEN W, SHEN C. Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete [J]. Construction and Building Materials, 2013, 44: 1–6. DOI: https://doi.org/10.1016/j.conbuildmat.2013.02.075.

    Google Scholar 

  22. DIAB A M, ELYAMANY H E, ELMOATY A E M A, SREH M M. Effect of nanomaterials additives on performance of concrete resistance against magnesium sulfate and acids [J]. Construction and Building Materials, 2019, 210: 210–231. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.099.

    Google Scholar 

  23. MAHDIKHANI M, BAMSHAD O, FALLAH SHIRVANI M. Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition [J]. Construction and Building Materials, 2018. 167: 929–935. DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.137.

    Google Scholar 

  24. BIRICIK H, SARIER N. Comparative study of the characteristics of nano silica-, silica fume-and fly ash-incorporated cement mortars [J]. Materials Research, 2014, 17(3): 570–582. DOI: https://doi.org/10.1590/S1516-14392014005000054

    Google Scholar 

  25. QUERCIA BIANCHI G. Application of nano-silica in concrete [D]. Eindhoven: Technische Universiteit Eindhoven, 2014. DOI: https://doi.org/10.6100/IR780551.

    Google Scholar 

  26. ASSI L N. Cost and fuel usage optimization of activating solution based silica fume geopolymer concrete [D]. University of South Carolina. 2017.

  27. HENDI A, RAHMANI H, MOSTOFINEJAD D, TAVAKOLINIA A, KHOSRAVI M. Simultaneous effects of microsilica and nanosilica on self-consolidating concrete in a sulfuric acid medium [J]. Construction and Building Materials, 2017. 152: 192–205. DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.165.

    Google Scholar 

  28. MAHMOUD M, BASSUONI M T. Response of concrete to incremental aggression of sulfuric acid [J]. Journal of Testing and Evaluation, 2020, 48(4): 19. DOI: https://doi.org/10.1520/JTE20180114.

    Google Scholar 

  29. HEWAYDE E, ALLOUCHE E, NAKHLA G. Experimental investigations of the effect of selected admixtures on the resistance of concrete to sulfuric acid attack [J]. New Pipeline Technologies, Security, and Safety, 2003. DOI: https://doi.org/10.1061/40690(2003)33.

  30. RAHMANI H, RAMAZANIANPOUR A, PARHIZKAR T, HILLEMEIER B. Contradictory effects of silica fume concretes in sulfuric acid environments [C]// 3rd International Conference on Concrete & Development. Tehran, Iran, 2009: 761–774.

  31. WAFA F. Accelerated sulfate attack on concrete in a hot climate [J]. Cement, Concrete and Aggregates, 1994, 16(1): 31–35. DOI: https://doi.org/10.1520/CCA10558J.

    Google Scholar 

  32. ATTIOGBE E K, RIZKALLA S H. Response of concrete to sulfuric acid attack [J]. ACI Materials Journal, 1988, 85(6): 481–488.

    Google Scholar 

  33. TOKYAY M. Cement and concrete mineral admixtures [M]. Boca Raton, Florida: CRC Press, 2016.

    Google Scholar 

  34. ACI COMMITTEE, 506R-16: Guide to Shotcrete [R]. American Concrete Institute: Farmington Hills, MI, United States. 2016.

    Google Scholar 

  35. BERRA M, CARASSITI F, MANGIALARDI T, PAOLINI A E, SEBASTIANI M. Effects of nanosilica addition on workability and compressive strength of Portland cement pastes [J]. Construction and Building Materials, 2012, 35: 666–675. DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.132.

    Google Scholar 

  36. SIDDIQUE R. Utilization of silica fume in concrete: Review of hardened properties [J]. Resources, Conservation and Recycling, 2011, 55(11): 923–932. DOI: https://doi.org/10.1016/j.resconrec.2011.06.012.

    Google Scholar 

  37. KHALOO A, MOBINI M H, HOSSEINI P. Influence of different types of nano-SiO2 particles on properties of high-performance concrete [J]. Construction and Building Materials, 2016, 113: 188–201. DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.041.

    Google Scholar 

  38. WONG H S, ABDUL RAZAK H. Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance [J]. Cement and Concrete Research, 2005, 35(4): 696–702. DOI: https://doi.org/10.1016/j.cemconres.2004.05.051.

    Google Scholar 

  39. ASTM C192/C192M-16a. Standard practice for making and curing concrete test specimens in the laboratory [S]. ASTM International: West Conshohocken, PA. United States. 2016.

    Google Scholar 

  40. ASTM C642-13. Standard test method for density, absorption, and voids in hardened concrete [S]. ASTM International: West Conshohocken, PA. United States, 2013. DOI: https://doi.org/10.1520/c0642-13.

    Google Scholar 

  41. ASTM C39/C39M-18. Standard test method for compressive strength of cylindrical concrete specimens [S]. ASTM International: West Conshohocken, PA. United States, 2018.

    Google Scholar 

  42. HOSSAIN M M, KARIM M R, HASAN M, HOSSAIN M K, ZAIN M F M. Durability of mortar and concrete made up of pozzolans as a partial replacement of cement: A review [J]. Construction and Building Materials, 2016, 116: 128–140. DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.147.

    Google Scholar 

  43. WANG J, NIU D, DING S, MI Z, LUO D. Microstructure, permeability and mechanical properties of accelerated shotcrete at different curing age [J]. Construction and Building Materials, 2015, 78: 203–216. DOI: https://doi.org/10.1016/j.conbuildmat.2014.12.111.

    Google Scholar 

  44. SUPIT S W M, SHAIKH F U A. Durability properties of high volume fly ash concrete containing nano-silica [J]. Materials and Structures, 2015, 48(8): 2431–2445. DOI: https://doi.org/10.1617/s11527-014-0329-0.

    Google Scholar 

  45. POON C S, KOU S C, LAM L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete [J]. Construction and Building Materials, 2006, 20(10): 858–865. DOI: https://doi.org/10.1016/j.conbuildmat.2005.07.001.

    Google Scholar 

  46. ABBASS W, KHAN M I, MOURAD S. Experimentation and predictive models for properties of concrete added with active and inactive SiO2 fillers [J]. Materials, 2019, 12(2): 299. DOI: https://doi.org/10.3390/ma12020299.

    Google Scholar 

  47. YAJUN J, CAHYADI J H. Simulation of silica fume blended cement hydration [J]. Materials and Structures, 2004, 37(6): 397–404. DOI: https://doi.org/10.1007/BF02479636.

    Google Scholar 

  48. RUPASINGHE M, SAN NICOLAS R, MENDIS P, SOFI M, NGO T. Investigation of strength and hydration characteristics in nano-silica incorporated cement paste [J]. Cement and Concrete Composites, 2017, 80: 17–30. DOI: https://doi.org/10.1016/j.cemconcomp.2017.02.011.

    Google Scholar 

  49. DODSON V H. Pozzolans and the pozzolanic reaction [M]//Concrete Admixtures, Boston, MA: Springer US, 1990. DOI: https://doi.org/10.1007/978-1-4757-4843-77.

    Google Scholar 

  50. RICHARDSON I G. The nature of C-S-H in hardened cements [J]. Cement and Concrete Research, 1999, 29(8): 1131–1147. DOI: https://doi.org/10.1016/S0008-8846(99)00168-4.

    Google Scholar 

  51. BASSUONI M T, NEHDI M L. Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction [J]. Cement and Concrete Research, 2007, 37(7): 1070–1084. DOI: https://doi.org/10.1016/j.cemconres.2007.04.014.

    Google Scholar 

  52. PELISSER F, GLEIZE P J P, MIKOWSKI A. Effect of the Ca/Si molar ratio on the micro/nanomechanical properties of synthetic C-S-H measured by nanoindentation [J]. The Journal of Physical Chemistry C, 2012, 116(32): 17219–17227. DOI: https://doi.org/10.1021/jp302240c.

    Google Scholar 

  53. BAHAFID S, GHABEZLOO S, DUC M, FAURE P, SULEM J. Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density [J]. Cement and Concrete Research, 2017, 95: 270–281. DOI: https://doi.org/10.1016/j.cemconres.2017.02.008.

    Google Scholar 

  54. TORII K, KAWAMURA M. Pore structure and chloride ion permeability of mortars containing silica fume [J]. Cement and Concrete Composites, 1994, 16(4): 279–286. DOI: https://doi.org/10.1016/0958-9465(94)90040-X.

    Google Scholar 

  55. MEHTA P K, MONTEIRO P J. Concrete microstructure, properties and materials [M]. New York: McGraw-Hill Education, 2014.

    Google Scholar 

  56. QUERCIA G, SPIESZ P, HÜSKEN G, BROUWERS H. SCC modification by use of amorphous nano-silica [J]. Cement and Concrete Composites, 2014, 45: 69–81. DOI: https://doi.org/10.1016/j.cemconcomp.2013.09.001.

    Google Scholar 

  57. ZHANG M H, ISLAM J, PEETHAMPARAN S. Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag [J]. Cement and Concrete Composites, 2012, 34(5): 650–662. DOI: https://doi.org/10.1016/j.cemconcomp.2012.02.005.

    Google Scholar 

  58. YAJUUN J, CAHYADI J. Investigation on microstructure of silica fume cement pastes [J]. WIT Transactions on the Built Environment, 2002, 59: 9.

    Google Scholar 

  59. LI H, YAN D, CHEN G, XU S, LIU J, HU Y. Porosity, pore size distribution and chloride permeability of shotcrete modified with nano particles at early age [J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2016, 31(3): 582–589. DOI: https://doi.org/10.1007/s11595-016-1413-9.

    Google Scholar 

  60. WU Z, SHI C, KHAYAT K H, WAN S. Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC) [J]. Cement and Concrete Composites, 2016, 70: 24–34. DOI: https://doi.org/10.1016/j.cemconcomp.2016.03.003.

    Google Scholar 

  61. JALAL M, POULADKHAN A, HARANDI O F, JAFARI D. Comparative study on effects of class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete [J]. Construction and Building Materials, 2015, 94: 90–104. DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.001.

    Google Scholar 

  62. KONG D, DU X, WEI S, ZHANG H, YANG Y, SHAH S P. Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials [J]. Construction and Building Materials, 2012, 37: 707–715. DOI: https://doi.org/10.1016/j.conbuildmat.2012.08.006.

    Google Scholar 

  63. FOROOD T I, REDAELLI E, LOLLINI F, LI W, BERTOLINI L. Effects of nanosilica on compressive strength and durability properties of concrete with different water to binder ratios [J]. Advances in Materials Science and Engineering, 2016: 16. DOI: https://doi.org/10.1155/2016/8453567.

  64. LIM S, MONDAL P. Effects of incorporating nanosilica on carbonation of cement paste [J]. Journal of Materials Science, 2015, 50(10): 3531–3540. DOI: https://doi.org/10.1007/s10853-015-8910-7.

    Google Scholar 

  65. SARGENT P. The development of alkali-activated mixtures for soil stabilisation [M]// Handbook of alkali-activated cements, mortars and concretes. Elsevier, 2015. DOI: https://doi.org/10.1533/9781782422884.4.555.

  66. ABID K, GHOLAMI R, ELOCHUKWU H, MOSTOFI M, BING C H, MUKTADIR G. A methodology to improve nanosilica based cements used in CO2 sequestration sites [J]. Petroleum, 2018, 4(2): 198–208. DOI: https://doi.org/10.1016/j.petlm.2017.10.005.

    Google Scholar 

  67. DU H, DU S, LIU X. Durability performances of concrete with nano-silica [J]. Construction and Building Materials, 2014, 73: 705–712. DOI: https://doi.org/10.1016/j.conbuildmat.2014.10.014.

    Google Scholar 

  68. AYDıN A C, NASL V J, KOTAN T. The synergic influence of nano-silica and carbon nano tube on self-compacting concrete [J]. Journal of Building Engineering, 2018, 20: 467–475. DOI: https://doi.org/10.1016/j.jobe.2018.08.013.

    Google Scholar 

  69. SADRMOMTAZI A, FASIHI A, BALALAEI F, HAGHI A. Investigation of mechanical and physical properties of mortars containing silica fume and nano-SiO2 [C]//Proceedings of the Third International Conference on Concrete and Development. Tehran, Iran, 2009: 27–29.

  70. DYER T. Influence of cement type on resistance to attack from two carboxylic acids [J]. Cement and Concrete Composites, 2017, 83: 20–35. DOI: https://doi.org/10.1016/j.cemconcomp.2017.07.004.

    Google Scholar 

  71. LIN-PING W, GUANG-PING H, CHAO-SHI H, WEI VICTOR L. Effects of cellulose nanocrystals on improving the acid resistance of cementitious composites in mining [J]. International Journal of Minerals, Metallurgy and Materials. DOI: https://doi.org/10.1007/s12613-020-2087-z.

  72. MAKHLOUFI Z, BEDERINA M, BOUHICHA M, KADRI E H. Effect of mineral admixtures on resistance to sulfuric acid solution of mortars with quaternary binders [J]. Physics Procedia, 2014, 55: 329–335. DOI: https://doi.org/10.1016/j.phpro.2014.07.048.

    Google Scholar 

  73. RAHMANI H, RAMZANIANPOUR A. Effect of silica fume and natural pozzolanas on sulfuric acid resistance of dense concretes [J]. Asian Journal of Civil Engineering, 2008, 9(3): 303–319.

    Google Scholar 

  74. FENG J, SUN J, YAN P. The influence of ground fly ash on cement hydration and mechanical property of mortar [J]. Advances in Civil Engineering, 2018. DOI: https://doi.org/10.1155/2018/4023178.

  75. AL-SWAIDANI A M, ALIYAN S D, ADARNALY N. Mechanical strength development of mortars containing volcanic scoria-based binders with different fineness [J]. Engineering Science and Technology, 2016, 19(2): 970–979. DOI: https://doi.org/10.1016/jjestch.2015.12.006.

    Google Scholar 

  76. TSUBONE K, YAMAGUCHI Y, OGAWA Y, KAWAI K. Deterioration of concrete immersed in sulfuric acid for a long term [J]. Key Engineering Materials, 2016, 711: 659–664. DOI: https://doi.org/10.4028/www.scientific.net/KEM.711.659.

    Google Scholar 

  77. CHENG-YI H, FELDMAN R F. Hydration reactions in portland cement-silica fume blends [J]. Cement and Concrete Research, 1985, 15(4): 585–592. DOI: https://doi.org/10.1016/0008-8846(85)90056-0.

    Google Scholar 

  78. KADRI E H, KENAI S, EZZIANE K, SIDDIQUE R, de SCHUTTER G. Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar [J]. Applied Clay Science, 2011, 53(4): 704–708. DOI: https://doi.org/10.1016/j.clay.2011.06.008.

    Google Scholar 

  79. SIAD H, LACHEMI M, SAHMARAN M, HOSSAIN K M A. Effect of glass powder on sulfuric acid resistance of cementitious materials [J]. Construction and Building Materials, 2016, 113: 163–173. DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.049.

    Google Scholar 

  80. NEMATZADEH M, FALLAH-VALUKOLAEE S. Erosion resistance of high-strength concrete containing forta-ferro fibers against sulfuric acid attack with an optimum design [J]. Construction and Building Materials, 2017, 154: 675–686. DOI: https://doi.org/10.1016/j.conbuildmat.2017.07.180.

    Google Scholar 

  81. LESLIE J, CHEESMAN W. An ultrasonic method of studying deterioration and cracking in concrete structures [J]. Journal of the American Concrete Institute, 1949, 21(1): 17–36.

    Google Scholar 

  82. FELDMAN R F. Non-destructive testing of concrete [J]. Canadian Building Digest, 1977, 187: 4.

    Google Scholar 

  83. KHAN H A, CASTEL A, KHAN M S H, MAHMOOD A H. Durability of calcium aluminate and sulphate resistant Portland cement based mortars in aggressive sewer environment and sulphuric acid [J]. Cement and Concrete Research, 2019, 124: 105852. DOI: https://doi.org/10.1016/j.cemconres.2019.105852.

    Google Scholar 

  84. GRANDCLERC A, DANGLA P, GUEGUEN-MINERBE M, CHAUSSADENT T. Modelling of the sulfuric acid attack on different types of cementitious materials [J]. Cement and Concrete Research, 2018, 105: 126–133. DOI: https://doi.org/10.1016/j.cemconres.2018.01.014.

    Google Scholar 

  85. GU L, BENNETT T, VISINTIN P. Sulphuric acid exposure of conventional concrete and alkali-activated concrete: Assessment of test methodologies [J]. Construction and Building Materials, 2019, 197: 681–692. DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.166.

    Google Scholar 

Download references

Acknowledgment

The authors are thankful for the financial support by the Natural Sciences and Engineering Research Council of Canada (NSERC RGPIN-2017-05537) and the generous donation of Aerosol-fumed silica from Evonik Industries.

Author information

Authors and Affiliations

Authors

Contributions

WU Lin-ping was responsible for experimental design, data collection and analysis, and manuscript writing. LIU Wei Victor was involved in concept formation and contributed to manuscript composition and edits. HUANG Guang-ping helped in data collection and manuscript edits.

Corresponding author

Correspondence to Wei Victor Liu.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Foundation item: Project(NSERC RGPIN-2017-05537) supported by the Natural Sciences and Engineering Research Council of Canada

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Lp., Huang, Gp. & Liu, W.V. Performance evaluation of nano-silica and silica fume on enhancing acid resistance of cement-based composites for underground structures. J. Cent. South Univ. 27, 3821–3838 (2020). https://doi.org/10.1007/s11771-020-4473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4473-0

Key words

关键词

Navigation