Skip to main content
Log in

Formation and wear behaviors of in-situ Al3Ti/Al composites using aluminum and titanium fibers under electromagnetic induction heating

感应加热作用下铝和钛纤维原位合成 Al3Ti/Al 复合材料及其磨损行为研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Under various electromagnetic induction heating powers, different Al3Ti/Al composites were fabricated by in-situ synthesis method from aluminum and titanium fibers. Microstructures and particles distribution of the composites were examined by XRD, SEM and EDS. The results show that no other intermetallic compounds beside Al3Ti can be in-situ synthesized. Around the titanium fibers, the reaction zones and diffusion zones can be obviously found. Due to the stirring of the electromagnetic function, the formation of the micro-cracks inside the reaction zone was conducive to the peeling off of the Al3Ti particles, and ensures the continuous reaction between liquid aluminum and titanium fibers, as well as the diffusion of Al3Ti particles. At the same time, there were secondary splits of Al3Ti particles located in diffusion zones. Two-body abrasion test shows that with the increase of induction heating power, the wear rates of the composites reduced and the number of grooves decreased.

摘要

通过施加不同的感应加热功率, 由铝和钛纤维进行原位反应, 制备出 Al3Ti/Al 复合材料. 通过 XRD,SEM 和 EDS 表征了复合材料的微观结构和颗粒分布情况. 结果表明, 反应产物仅为 Al3Ti 金属间化合物, 钛纤维周围有明显的反应区和扩散区. 反应区的微裂纹有利于 Al3Ti 颗粒的剥离, 促进了液态铝与钛纤维之间的反应. 由于电磁感应加热的搅拌功能, 促进了Al3Ti 颗粒的反应和扩散. 同时, Al3Ti 颗粒在扩散过程中存在二次分离与剥落. 两体磨损试验表明, 随着感应加热功率的加大, 磨损率和沟槽数量减少, 复合材料的耐磨性能提高.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. GUPTA P K, SRIVASTAVA R K. Fabrication of ceramic reinforcement aluminium and its alloys metal matrix composite materials: A review [J]. Materials Today: Proceedings, 2018, 5(9): 18761–18775. DOI: https://doi.org/10.1016/j.matpr.2018.06.223.

    Google Scholar 

  2. ZHU He-guo, JIANG Ya-ling, SONG Jin-zhu, LI Jian-liang, MUNROE P, XIE Zong-han. In situ synthesis and characterization of a hierarchically structured Al2O3/Al3Ti composite [J]. Journal of Materials Science, 2013, 48(2): 929–935. DOI: https://doi.org/10.1007/s10853-012-6817-0.

    Article  Google Scholar 

  3. LIU Zhi-wei, CHENG Na, ZHENG Qiao-ling, WU Jian-hua, HAN Qing-you, HUANG Zhi-fu, XING Jian-dong, LI Ye-fei, GAO Yi-ming. Processing and tensile properties of A356 composites containing in situ small-sized Al3Ti particulates [J]. Materials Science and Engineering A, 2018, 710: 392–399. DOI:https://doi.org/10.1016/j.msea.2017.11.005.

    Article  Google Scholar 

  4. ZHANG Dong-qiang, YANG Ping, WU Jian-yang, ZHAO Jing, CHEN Yan-an. Preparation of defect free ceramic/Ti composite membranes by surface modification and in situ oxidation [J]. Journal of Central South University, 2019, 26(12): 3295–3304. DOI: https://doi.org/10.1007/s11771-019-4253-x.

    Article  Google Scholar 

  5. GUPTA R, DANIEL B S S. Impression creep behaviour of in-situ Al3Ti reinforced Al alloy composite fabricated by salt-melt reaction technique [J]. Materials Today: Proceedings, 2018, 5(9): 16936–16945. DOI:https://doi.org/10.1016/j.matpr.2018.04.097.

    Google Scholar 

  6. CHIANEH V A, HOSSEINI H M, NOFAR M. Micro structural features and mechanical properties of Al-Al3Ti composite fabricated by in-situ powder metallurgy route [J]. Journal of Alloys and Compounds, 2009, 473(1, 2): 127–132. DOI:https://doi.org/10.1016/j.jallcom.2008.05.068.

    Article  Google Scholar 

  7. GUPTA R, DANIEL B S S. Impression creep behaviour of ultrasonically processed in-situ Al3Ti reinforced aluminium composite [J]. Materials Science and Engineering A, 2018, 733: 257–266. DOI:https://doi.org/10.1016/j.msea.2018.07.017.

    Article  Google Scholar 

  8. XU Qian-gang, ZHANG Hai-feng, DING Bing-zhe, HU Zhuang-qi. Nature and growth of interaction layers formed during the reaction between solid Ni and liquid Al [J]. Journal of Materials Sciences and Technology, 2009, 18(6): 512–515. DOI: EN/Y2002/V18/I06/512.

    Google Scholar 

  9. QIN Jin, CHEN Gang, WANG Bo, HU Nan, HAN Fei, DU Zhi-ming. Formation of in-situ Al3Ti particles from globular Ti powders and Al alloy melt under ultrasonic vibration [J]. Journal of Alloys and Compounds, 2015, 653: 32–38. DOI: https://doi.org/10.1016/j.jallcom.2015.09.005.

    Article  Google Scholar 

  10. ARJMAND S, KHAYATI G R, AKBAIR, G H. Al/Ti5Si3-Al3Ti composite prepared via in-situ surface coating of Ti using tungsten inert gas welding [J]. Journal of Alloys and Compounds, 2019, 808: 151739. DOI: https://doi.org/10.1016/j.jallcom.2019.151739.

    Article  Google Scholar 

  11. KESANGAM N, PINITSOONTORN S, SRIMANOSAOWAPAK S. Effect of initial microstructure on induction heating of A319 aluminium alloy [J]. Materials Today: Proceedings, 2018, 5(3): 9615–9623. DOI: https://doi.org/10.1016/j.matpr.2017.10.148.

    Google Scholar 

  12. TOCHAEE E B, HOSSEINI H M, REIHANI S S. Fabrication of high strength in-situ Al-Al3Ti nanocomposite by mechanical alloying and hot extrusion: Investigation of fracture toughness [J]. Materials Science and Engineering A, 2016, 658: 246–254. DOI:https://doi.org/10.1016/j.msea.2016.02.010.

    Article  Google Scholar 

  13. LIU Zhi-wei, HAN Qing-you, LI Jian-guo. Fabrication of in situ Al3Ti/Al composites by using ultrasound assisted direct reaction between solid Ti powders and liquid Al [J]. Powder Technology, 2013, 247: 55–59. DOI: https://doi.org/10.1016/j.powtec.2013.07.005.

    Article  Google Scholar 

  14. TOMOSHIGE R, MATSUSHITA T. Production of titanium-aluminum-carbon ternary composites with dispersed fine TiC particles by combustion synthesis and their microstructure observations [J]. Ceram Soc Jpn, 1996, 104: 94–100. DOI: https://doi.org/10.2109/jcersj.104.94.

    Article  Google Scholar 

  15. LI Gui-rong, WANG Hong-ming, ZHAO Yu-tao, CHEN Deng-bin, CHEN Gang, CHENG Xiao-nong. Microstructure of in situ Al3Ti/6351Al composites fabricated with electromagnetic stirring and fluxes [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(4): 577–583. DOI: https://doi.org/10.1016/S1003-6326(09)60181-3.

    Article  Google Scholar 

  16. MIRJALILI M, SOLTANIEH M, MATSUURA K, OHNO M. On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple [J]. Intermetallics, 2013, 32: 297–302. DOI: https://doi.org/10.1016/j.intermet.2012.08.017.

    Article  Google Scholar 

  17. SATO H, WATANABE Y. Three-dimensional microstructural analysis of fragmentation behavior of platelet Al3Ti particles in Al-Al3Ti composite deformed by equal-channel angular pressing [J]. Materials Characterization, 2018, 144: 305–315. DOI: https://doi.org/10.1016/j.matchar.2018.07.005.

    Article  Google Scholar 

  18. JIANG Shu-ying, LI Shi-chun, ZHANG Lei. Microstructure evolution of Al-Ti liquid-solid interface [J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 3545–3552. DOI: https://doi.org/10.1016/S1003-6326(13)62899-X.

    Article  Google Scholar 

  19. MA Si-ming, WANG Yong-shneg, WANG Xiao-ming. The in-situ formation of Al3Ti reinforcing particulates in an Al-7wt% Si alloy and their effects on mechanical properties [J]. Journal of Alloys and Compounds, 2019, 792: 365–374. DOI: https://doi.org/10.1016/j.jallcom.2019.04.064.

    Article  Google Scholar 

  20. WANG Hong-ming, LI Gui-rong, ZHAO Yu-tao, ZHANG Zhao. Microstructure, billet surface quality and tensile property of (Al2O3+Al3Zr)p/Al composites in situ synthesized with electromagnetic field [J]. Journal of Alloys and Compounds, 2011, 509(18): 5696–5700. DOI: https://doi.org/10.1016/j.jallcom.2011.02.139.

    Article  Google Scholar 

  21. LIU Zheng, LIU Xiao-mei, HU Chun-hui, MAO Wei-min. Research on fractal characteristics of primary phase morphology in semi-solid A356 alloy [J]. Acta Metallurgica Sinica (English Letters), 2009, 22(6): 421–428. DOI: https://doi.org/10.1016/S1006-7191(08)60118-0.

    Article  Google Scholar 

  22. ZOU Qing-chuan, HAN Ning, SHEN Zhang-feng, JIE Jin-chuan, LI Ting-ju. Effects of AlB2/AlP phase and electromagnetic stirring on impurity B/P removal in the solidification process of Al-30Si alloy [J]. Separation and Purification Technology, 2018, 207: 151–157. DOI: https://doi.org/10.1016/j.seppur.2018.06.052.

    Article  Google Scholar 

  23. LI Y, ZHANG Yu, BI Jing, LUO Zhen. Impact of electromagnetic stirring upon weld quality of Al/Ti dissimilar materials resistance spot welding [J]. Materials & Design, 2015: 577–586. DOI: https://doi.org/10.1016/j.matdes.2015.06.042.

  24. AGRAWAL S, GHOSE A K, CHAKRABARTY I. Effect of rotary electromagnetic stirring during solidification of in-situ Al-TiB2 composites [J]. Materials & Design, 2017, 113: 195–206. DOI: https://doi.org/10.1016/j.matdes.2016.10.007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by NIU Li-bin, WU Hong and MA Jun. MA Jun and NIU Li-bin provided the first draft of manuscript. GAO Chong provided the measured data. AN Yu-jiao conducted the literature review. All authors replied to reviewers’ comments and revised the final version.

Corresponding authors

Correspondence to Li-bin Niu  (牛立斌) or Hong Wu  (武宏).

Ethics declarations

MA Jun, NIU Li-bin, WU Hong, GAO Chong, AN Yu-jiao declare that they have no conflict of interest.

Additional information

Foundation item: Project(2015DFR50990-01) supported by International Cooperation Project of Ministry of Science and Technology of China; Projects(18JS060, 18JS075) supported by the Shaanxi Key Laboratory of Nano-materials and Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Niu, Lb., Wu, H. et al. Formation and wear behaviors of in-situ Al3Ti/Al composites using aluminum and titanium fibers under electromagnetic induction heating. J. Cent. South Univ. 27, 3594–3602 (2020). https://doi.org/10.1007/s11771-020-4500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4500-1

Key words

关键词

Navigation