Skip to main content
Log in

A new chlorinated non-fullerene acceptor based organic photovoltaic cells over 12% efficiency

光电转换率超过 12%的含氯非富勒烯受体基有机光伏器件

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The method to fluorinate the terminal group has achieved remarkable success and been widely used to fine-tune the intrinsic properties of organic acceptor materials. Referring to chlorination, however, it gets less attention and remains ambiguous effect on organic photovoltaic (OPV) cells. Herein, a new non-fullerene acceptor named Y19 was reported with benzotriazole as the electron-deficient core and 2Cl-ICs as the strong electron-withdrawing end groups. Y19 exhibits a wide film absorption band from 600 nm to 948 nm and low LUMO (the lowest unoccupied molecular orbital) energy level of −3.95 eV Photovoltaic devices based on PM6:Y19 show high-power conversion efficiency (PCE) of 12.76 % with high open-circuit voltage (Voc) of 0.84 V, short-circuit current density (Jsc) of 22.38 mA/cm2 and fill factor (FF) of 68.18 %. Broad external quantum efficiency (EQE) response of over 60 % in the range of 480–860 nm can be obtained. This study demonstrates that chlorination, as a low-cost molecular design strategy, has its own superiorities to improve device performance and promote the potential application in OPV.

摘要

末端基团的氟化能显著改善有机受体材料的光电性能并已实现了广泛的应用. 相比之下, 氯化策略被关注得较少且对有机光伏电池的影响仍不明确. 这里, 我们报道了一个以苯并三唑为缺电子核及 2Cl-IC 为末端基团的新型非富勒烯受体 Y19. Y19 表现了优异的光学及电化学性质. Y19 的薄膜吸收边带为 948 nm, LUMO 能级水平为−3.95 eV. 基于 PM6:Y19 的光伏器件实现了 12.76 %的能量转换效率, 其开路电压为 0.84 V, 短路电流密度为 22.38 mA/cm2, 填充因子为 0.68. 优化后的活性层有理想的形貌并且电子迁移率达到 6.52×10−4 cm2/(V·s). EQE 测试表明外部量子效率在 480∼860 nm 的范围内超过了 60%. 这一研究表明氯化作为一种低成本的分子设计策略在一定程度上也能改善光伏性能.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. INGANAS O. Organic photovoltaics over three decades [J]. Advanced Materials, 2018, 30(35): 1800388. DOI: https://doi.org/10.1002/adma.201800388.

    Article  Google Scholar 

  2. LI Gang, ZHU Rui, YANG Yang. Polymer solar cells [J]. Nature Photonics, 2012, 6(3): 153–161. DOI: https://doi.org/10.1038/nphoton.2012.11.

    Article  Google Scholar 

  3. WADSWORTH A, MOSER M, MARKS A, LITTLE M S, GASPARINI N, BRABEC C J, BARAN D, MCCULLOCH I. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells [J]. Chemical Society Reviews, 2019, 48(6): 1596–1625. DOI: https://doi.org/10.1039/c7cs00892a.

    Article  Google Scholar 

  4. HONG Ling, YAO Hui-feng, WU Zi-ang, CUI Yong, ZHANG Tao, XU Ye, YU Run-nan, LIAO Qing, GAO Bo-wei, XIAN Kai-hu. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency [J]. Advanced Materials, 2019, 31(39): 1903441. DOI: https://doi.org/10.1002/adma.201903441.

    Article  Google Scholar 

  5. MENG Ling-xian, ZHANG Ya-min, WAN Xiang-jian, LI Chen-xi, ZHANG Xin, WANG Yan-bo, KE Xin, XIAO Zuo, DING Li-ming, XIA Ruo-xi. Organic and solution-processed tandem solar cells with 17.3% efficiency [J]. Science, 2018, 361(6407): 1094–1098. DOI: https://doi.org/10.1126/science.aat2612.

    Article  Google Scholar 

  6. TANG C W. Two-layer organic photovoltaic cell [J]. Applied Physics Letters, 1986, 48(2): 183–185. DOI: https://doi.org/10.1063/1.96937.

    Article  Google Scholar 

  7. CHENG Pei, LI Gang, ZHAN Xiao-wei, YANG Yang. Next-generation organic photovoltaics based on non-fullerene acceptors [J]. Nature Photonics, 2018, 12(3): 131–142. DOI: https://doi.org/10.1038/s41566-018-0104-9.

    Article  Google Scholar 

  8. FU Hui-ting, WANG Zhao-hui, SUN Yan-ming. Polymer donors for high-performance non-fullerene organic solar cells [J]. Angewandte Chemie International Edition, 2019, 58(14): 4442–4453. DOI: https://doi.org/10.1002/anie.201806291.

    Article  Google Scholar 

  9. LIU Ya-hui, LU Hao, LI Miao, ZHANG Zhe, FENG Shi-yu, XU Xin-jun, WU You-zhi, BO Zhi-shan. Enhancing the performance of non-fullerene organic solar cells using regioregular wide-bandgap polymers [J]. Macromolecules, 2018, 51(21): 8646–8651. DOI: https://doi.org/10.1021/acs.macromol.8b01677.

    Article  Google Scholar 

  10. NIELSEN C B, HOLLIDAY S, CHEN H Y, CRYER S J, MCCULLOCH I. Non-fullerene electron acceptors for use in organic solar cells [J]. Accounts of Chemical Research, 2015, 48(11): 2803–2812. DOI: https://doi.org/10.1021/acs.accounts.5b00199.

    Article  Google Scholar 

  11. XU Xiao-peng, BI Zhao-zhao, MA Wei, WANG Zi-shuai, CHOY W C, WU Wen-lin, ZHANG Guang-jun, LI Ying, PENG Qiang. Highly efficient ternary-blend polymer solar cells enabled by a nonfullerene acceptor and two polymer donors with a broad composition tolerance [J]. Advanced Materials, 2017, 29(46): 1704271. DOI: https://doi.org/10.1002/adma.201704271.

    Article  Google Scholar 

  12. DONG Yi-fan, CHA H, ZHANG Jiang-bin, PASTOR E, TULADHAR P S, MCCULLOCH I, DURRANT J R, BAKULIN A A. The binding energy and dynamics of charge-transfer states in organic photovoltaics with low driving force for charge separation [J]. The Journal of Chemical Physics, 2019, 150(10): 104704. DOI: https://doi.org/10.1063/1.5079285.

    Article  Google Scholar 

  13. NIU Meng-si, WANG Kang-wei, YANG Xiao-yu, BI Peng-qing, ZHANG Kang-ning, FENG Xian-jin, CHEN Fei, QIN Wei, XIA Jian-long, HAO Xiao-tao. Hole transfer originating from weakly bound exciton dissociation in acceptor-donor-acceptor nonfullerene organic solar cells [J]. The Journal of Physical Chemistry Letters, 2019, 10(22): 7100–7106. DOI: https://doi.org/10.1021/acs.jpclett.9b02837.

    Article  Google Scholar 

  14. WANG Jia-liang, PEURIFOY S R, BENDER M T, NG F, CHOI K S, NUCKOLLS C, ARNOLD M S. Non-fullerene acceptors for harvesting excitons from semiconducting carbon nanotubes [J]. The Journal of Physical Chemistry C, 2019, 123(35): 21395–21402. DOI: https://doi.org/10.1021/acs.jpcc.9b06381.

    Article  Google Scholar 

  15. YOUNTS R, DANILOV E O, GUNDOGDU K, GAUTAM B R. Charge generation dynamics in polymer nonfullerene solar cells with low energy loss [J]. Journal of Photonics for Energy, 2018, 8(3): 032209. DOI: https://doi.org/10.1117/1.JPE.8.032209.

    Article  Google Scholar 

  16. YUAN Jun, HUANG Tian-yi, CHENG Pei, ZOU Ying-ping, ZHANG Huo-tian, YANG J L, CHANG S Y, ZHANG Zhen-zhen, HUANG Wen-chao, WANG Rui. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics [J]. Nature Communications, 2019, 10(1): 1–8. DOI: https://doi.org/10.1038/s41467-019-08386-9.

    Article  Google Scholar 

  17. YUAN Jun, ZHANG Yun-qiang, ZHOU Liu-yang, ZHANG Gui-chuan, YIP H L, LAU T K, LU Xin-hui, ZHU Can, PENG Hong-jian, JOHNSON P A. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core [J]. Joule, 2019, 3(4): 1140–1151. DOI: https://doi.org/10.1016/j.joule.2019.01.004.

    Article  Google Scholar 

  18. YANG Yan-kang, ZHANG Zhi-Guo, BIN Hai-jun, CHEN Shan-shan, GAO Liang, XUE Ling-wei, YANG C, LI Yong-fang. Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells [J]. Journal of the American Chemical Society, 2016, 138(45): 15011–15018. DOI: https://doi.org/10.1021/jacs.6b09110.

    Article  Google Scholar 

  19. LIU Qi-shi, JIANG Yu-fan, JIN Ke, QIN Jian-qiang, XU Jin-gui, LI Wen-ting, XIONG Ji, LIU Jin-feng, XIAO Zuo, SUN Kuan. 18% efficiency organic solar cells [J]. Science Bulletin, 2020, 65(4): 272–275. DOI:https://doi.org/10.1016/j.scib.2020.01.001.

    Article  Google Scholar 

  20. WANG Rui, YUAN Jun, WANG Rui, HAN Guang-chao, HUANG Tian-yi, HUANG Wen-chao, XUE Jing-jing, WANG Hao-cheng, ZHANG Chun-feng, ZHU Chen-hui. Rational tuning of molecular interaction and energy level alignment enables high-performance organic photovoltaics [J]. Advanced Materials, 2019, 31(43): 1904215. DOI: https://doi.org/10.1002/adma.201904215.

    Article  Google Scholar 

  21. ALDRICH T J, MATTA M, ZHU Wei-gang, SWICK S M, STERN C L, SCHATZ G C, FACCHETTI A, MELKONYAN F S, MARKS T J. Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response [J]. Journal of the American Chemical Society, 2019, 141(7): 3274–3287. DOI: https://doi.org/10.1021/jacs.8b13653.

    Article  Google Scholar 

  22. BAUER N, ZHANG Qian-qian, RECH J J, DAI Shui-xing, PENG Zheng-xing, ADE H, WANG Jia-yu, ZHAN Xiao-wei, YOU Wei. The impact of fluorination on both donor polymer and non-fullerene acceptor: The more fluorine, the merrier [J]. Nano Research, 2019, 12(9): 2400–2405. DOI: https://doi.org/10.1007/s12274-019-2362-3.

    Article  Google Scholar 

  23. CHEN Chih-Ping, CHEN Yi-Chun, YU Chao-ying. Increased open circuit voltage in a fluorinated quinoxaline-based alternating conjugated polymer [J]. Polymer Chemistry, 2013, 4(4): 1161–1166. DOI: https://doi.org/10.1039/C2PY20798B.

    Article  Google Scholar 

  24. CHEN Fang-xiao, XU Jing-qi, LIU Zhi-xi, CHEN Ming, XIA Ruo-xi, YANG Yong-chao, LAU T K, ZHANG Ying-zhu, LU Xin-hui, YIP H L. Near-infrared electron acceptors with fluorinated regioisomeric backbone for highly efficient polymer solar cells [J]. Advanced Materials, 2018, 30(52): 1803769. DOI: https://doi.org/10.1002/adma.201803769.

    Article  Google Scholar 

  25. FEI Zhu-ping, SHAHID M, YAACOBI G N, ROSSBAUER S, ZHONG Hong-liang, WATKINS S E, ANTHOPOULOS T D, HEENEY M. Thiophene fluorination to enhance photovoltaic performance in low band gap donor-acceptor polymers [J]. Chemical Communications, 2012, 48(90): 11130–11132. DOI: https://doi.org/10.1039/C2CC35079C.

    Article  Google Scholar 

  26. LECLERC N, CHAVEZ P, IBRAIKULOV O A, HEISER T, LÉVÊQUE P. Impact of backbone fluorination on π-conjugated polymers in organic photovoltaic devices: A review [J]. Polymers, 2016, 8(1): 11. DOI: https://doi.org/10.3390/polym8010011.

    Article  Google Scholar 

  27. MORI T, MA Xiao-ling, FURUHASHI H, NISHIKAWA T. Control of open voltage of organic photovoltaic cells using fluorinated self-assembled monolayer [J]. Journal of Photopolymer Science and Technology, 2013, 26(3): 377–381. DOI: https://doi.org/10.2494/photopolymer.26.377.

    Article  Google Scholar 

  28. TAKAO Y, MASUOKA T, YAMAMOTO K, MIZUTANI T, MATSUMOTO F, MORIWAKI K, HIDA K, IWAI T, ITO T, MIZUNO T. Synthesis and properties of novel fluorinated subnaphthalocyanines for organic photovoltaic cells [J]. Tetrahedron Letters, 2014, 55(33): 4564–4567. DOI: https://doi.org/10.1016/j.tetlet.2014.06.069.

    Article  Google Scholar 

  29. TANG Dong-sheng, WAN Jia-hui, XU Xiao-peng, LEE Y W, WOO H Y, FENG Kui, PENG Qiang. Naphthobistriazole-based wide bandgap donor polymers for efficient non-fullerene organic solar cells: Significant fine-tuning absorption and energy level by backbone fluorination [J]. Nano Energy, 2018, 53: 258–269. DOI: https://doi.org/10.1016/j.nanoen.2018.08.059.

    Article  Google Scholar 

  30. CHEN Meng-xue, ZHANG Zhuo-han, LI Wei, CAI Jin-long, YU Jiang-sheng, SPOONER E L, KILBRIDE R C, LI Dong-hui, DU Bao-cai, GURNEY R S. Regulating the morphology of fluorinated non-fullerene acceptor and polymer donor via binary solvent mixture for high efficiency J. Cent. South Univ. (2020) 27: polymer solar cells [J]. Science China Chemistry, 2019, 62(9): 1221–1229. DOI: https://doi.org/10.1007/s11426-019-9484-8.

    Article  Google Scholar 

  31. LIN Zhi-jing, HUANG Kun-xiang, WANG Zhao-long, CHEN Xian-jie, SUN Jing, XU Zheng, HE Tian, YIN Shou-chun, LI Miao-miao, ZHANG Qian. Alkyl side-chain and fluorination engineering in the indeno [1, 2-b] fluorene-based small-molecule acceptors for efficient non-fullerene organic solar cells [J]. Dyes and Pigments, 2019, 160: 432–438. DOI: https://doi.org/10.1016/j.dyepig.2018.08.039.

    Article  Google Scholar 

  32. ZHANG Guang-jun, XU Xiao-peng, BI Zhao-zhao, MA Wei, TANG Dong-sheng, LI Ying, PENG Qiang. Fluorinated and alkylthiolated polymeric donors enable both efficient fullerene and nonfullerene polymer solar cells [J]. Advanced Functional Materials, 2018, 28(10): 1706404. DOI: https://doi.org/10.1002/adfm.201706404.

    Article  Google Scholar 

  33. YAN Cen-qi, BARLOW S, WANG Zhao-hui, YAN He, JEN K Y, MARDER S R, ZHAN Xiao-wei. Non-fullerene acceptors for organic solar cells [J]. Nature Reviews Materials, 2018, 3(3): 18003. DOI: https://doi.org/10.1038/natrevmats.2018.3.

    Article  Google Scholar 

  34. WU Ya-nan, AN Cun-bin, SHI Lan-lan, YANG Li-yan, QIN Yun-peng, LIANG Ning-ning, HE Chang, WANG Zhao-hui, HOU Jian-hui. The crucial role of chlorinated thiophene orientation in conjugated polymers for photovoltaic devices [J]. Angewandte Chemie International Edition, 2018, 57(39): 12911–12915. DOI: https://doi.org/10.1002/anie.201807865.

    Article  Google Scholar 

  35. ZHANG Shao-qing, QIN Yun-peng, ZHU Jie, HOU Jian-hui. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor [J]. Advanced Materials, 2018, 30(20): 1800868. DOI: https://doi.org/10.1002/adma.201800868.

    Article  Google Scholar 

  36. FAN Qun-ping, ZHU Qing-lian, XU Zhuo, SU Wen-yan, CHEN Juan, WU Jing-nan, GUO Xia, MA Wei, ZHANG Mao-jie, LI Yong-fang. Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing [J]. Nano Energy, 2018, 48: 413–420. DOI: https://doi.org/10.1016/j.nanoen.2018.04.002.

    Article  Google Scholar 

  37. LUO Mei, ZHU Can, YUAN Jun, ZHOU Liu-yang, KESHTOV M, GODOVSKY D Y, ZOU Ying-ping. A chlorinated non-fullerene acceptor for efficient polymer solar cells [J]. Chinese Chemical Letters, 2019, 30(12): 2343–2346. DOI: https://doi.org/10.1016/j.cclet.2019.07.023.

    Article  Google Scholar 

  38. CUI Yong, YAO Hui-feng, ZHANG Jian-qi, ZHANG Tao, WANG Yu-ming, HONG Ling, XIAN Kai-hu, XU Bo-wei, ZHANG Shao-qing, PENG Jing. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages [J]. Nature Communications, 2019, 10(1): 1–8. DOI: https://doi.org/10.1038/s41467-019-10351-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by CAO Rui, CHEN Yu and ZOU Ying-ping. CAO Rui, CHEN Yu and CAI Fang-fang performed the experiments. CHEN Hong-gang, LIU Wei and GUAN Hui-lan collected the data. The initial draft of the manuscript was written by CAO Rui. WEI Qing-ya, LI Jing, CHANG Qin and LI Zhe reviewed and edited the manuscript.

Corresponding author

Correspondence to Ying-ping Zou  (邹应萍).

Ethics declarations

CAO Rui, CHEN Yu, CAI Fang-fang, CHEN Honggang, LIU Wei, GUAN Hui-lan, WEI Qing-ya, LI Jing, CHANG Qin and LI Zhe declare that they have no conflict of interest.

Additional information

Foundation item: Project(21875286) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, R., Chen, Y., Cai, Ff. et al. A new chlorinated non-fullerene acceptor based organic photovoltaic cells over 12% efficiency. J. Cent. South Univ. 27, 3581–3593 (2020). https://doi.org/10.1007/s11771-020-4501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4501-0

Key words

关键词

Navigation