Skip to main content
Log in

Spectral Decimation of the Magnetic Laplacian on the Sierpinski Gasket: Solving the Hofstadter–Sierpinski Butterfly

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The magnetic Laplacian (also called the line bundle Laplacian) on a connected weighted graph is a self-adjoint operator wherein the real-valued adjacency weights are replaced by unit complex-valued weights \(\{\omega _{xy}\}_{xy\in E}\), satisfying the condition that \(\omega _{xy}=\overline{\omega _{yx}}\) for every directed edge xy. When properly interpreted, these complex weights give rise to magnetic fluxes through cycles in the graph. In this paper we establish the spectrum of the magnetic Laplacian, as a set of real numbers with multiplicities, on the Sierpinski gasket graph (SG) where the magnetic fluxes equal \(\alpha \) through the upright triangles, and \(\beta \) through the downright triangles. This is achieved upon showing the spectral self-similarity of the magnetic Laplacian via a 3-parameter map \({\mathcal {U}}\) involving non-rational functions, which takes into account \(\alpha \), \(\beta \), and the spectral parameter \(\lambda \). In doing so we provide a quantitative answer to a question of Bellissard [Renormalization Group Analysis and Quasicrystals (1992)] on the relationship between the dynamical spectrum and the actual magnetic spectrum. Our main theorems lead to two applications. In the case \(\alpha =\beta \), we demonstrate the approximation of the magnetic spectrum by the filled Julia set of \({\mathcal {U}}\), the Sierpinski gasket counterpart to Hofstadter’s butterfly. Meanwhile, in the case \(\alpha ,\beta \in \{0,\frac{1}{2}\}\), we can compute the determinant of the magnetic Laplacian and the corresponding asymptotic complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. See also [4, Figure 2] for what appears to be a higher-resolution picture of [21, Figure 2], though it is the authors’ opinion that the two pictures have major differences.

  2. For the graph Laplacian \({\mathcal {L}}_\infty \) on an infinite, locally finite, connected graph with geometric self-similarity, it is expected that \(\sigma ({\mathcal {L}}_\infty ) = {\mathcal {J}} \cup {\mathcal {D}}\), where the set \({\mathcal {D}}\) depends on the self-similar structure of the graph under study. See [38] for illustrating examples. An example where \({\mathcal {D}}=\emptyset \) appears in a one-parameter family of self-similar “pq-Laplacians” on \({{\mathbb {Z}}}_+\) [10].

  3. The answer is yes for 1-parameter rational functions on \(\hat{{{\mathbb {C}}}}\) of degree \(\ge 2\) [40, Corollary 4.13]. This provides an algorithm for numerically generating pictures of the Julia set of a rational function.

  4. The semiconductance of an undirected edge with end vertices x and y is defined as \(\frac{1}{2}(\mathbf{c}_{xy}+\mathbf{c}_{yx})\).

  5. If \(G_\infty \) has bounded degree, the proof in [35, Theorem 4.1] suffices. If \(G_\infty \) has unbounded degree, then the proof proceeds according to [36, Theorem 3.1], which is based on von Neumann algebras.

  6. The limit of USTs on an infinite connected graph is a spanning forest. On \({{\mathbb {Z}}}^d\) the limit is a tree iff \(d\le 4\) [41].

  7. In (5.8) the weights associated to the logarithmic factors are probability weights. This is merely coincidental: for the graphical \((d-1)\)-dimensional Sierpinski simplex, the tree entropy equals \(\frac{d-2}{d}\log 2+\frac{d-2}{d-1}\log d + \frac{d-2}{d(d-1)}\log (d+2)\) [11, Corollary 4.1].

    More generally, the tree entropy of a unimodular random infinite connected weighted graph can take values in \([-\infty , \infty )\). For an example of a unimodular random graph with tree entropy equal to \(-\infty \), see [36, pp. 308-309].

  8. A power law modulated by log-periodic oscillations was proved for the growth of deterministic single-source abelian sandpile on SG [9].

  9. See [39, Chapter 5] for the proof of sandpile height distributions on the Hanoi tower graphs, a variant of SG. A nice exposition of the connection between sandpile density and the looping rate on periodic planar graphs is [29].

References

  1. Alexander, S.: Some properties of the spectrum of the Sierpiński gasket in a magnetic field. Phys. Rev. B (3) 29(10), 5504–5508 (1984)

    ADS  MathSciNet  Google Scholar 

  2. Anema, J.A., Tsougkas, K.: Counting spanning trees on fractal graphs and their asymptotic complexity. J. Phys. A 49(35), 355101, 21 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Bajorin, N., Chen, T., Dagan, A., Emmons, C., Hussein, M., Khalil, M., Mody, P., Steinhurst, B., Teplyaev, A.: Vibration modes of 3n-gaskets and other fractals. J. Phys. A 41(1), 015101, 21 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Bellissard, J.: Renormalization group analysis and quasicrystals, Ideas and methods in quantum and statistical physics (Oslo, 1988) (1992), 118–148

  5. Brzezińska, M., Cook, A.M., Neupert, T.: Topology in the Sierpiński-Hofstadter problem. Phys. Rev. B 98, 205116 (2018)

    ADS  Google Scholar 

  6. Brzoska, A., Coffey, A., Rooney, M., Loew, S., Rogers, L.G.: Spectra of magnetic operators on the diamond lattice fractal, arXiv preprint (2017). arXiv:1704.01609

  7. Burton, R., Pemantle, R.: Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab. 21(3), 1329–1371 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Chang, S.-C., Chen, L.-C., Yang, W.-S.: Spanning trees on the Sierpinski gasket. J. Stat. Phys. 126(3), 649–667 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Chen, J.P., Kudler-Flam, J.: Laplacian growth & sandpiles on the Sierpinski gasket: limit shape universality and exact solutions, Ann. Inst. Henri Poincaré D (2020+), to appear, with preprint available at arXiv:1807.08748

  10. Chen, J.P., Teplyaev, A.: Singularly continuous spectrum of a self-similar Laplacian on the half-line. J. Math. Phys. 57(5), 052104, 10 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Chen, J.P., Teplyaev, A., Tsougkas, K.: Regularized Laplacian determinants of self-similar fractals. Lett. Math. Phys. 108(6), 1563–1579 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Daerden, F., Priezzhev, V.B., Vanderzande, C.: Waves in the sandpile model on fractal lattices. Phys. A 292(1–4), 43–54 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Daerden, F., Vanderzande, C.: Sandpiles on a Sierpinski gasket. Phys. A Stat. Mech. Appl. 256(3), 533–546 (1998)

    Google Scholar 

  14. Domany, E., Alexander, S., Bensimon, D., Kadanoff, L.P.: Solutions to the Schrödinger equation on some fractal lattices. Phys. Rev. B (3) 28(6), 3110–3123 (1983)

    ADS  MathSciNet  Google Scholar 

  15. Frpzzd, (https://math.stackexchange.com/users/438055/frpzzd), Closed form solution for quadratic recurrence relations . https://math.stackexchange.com/q/2578046 (version: 2017-12-23)

  16. Finski, S.: Spanning trees, cycle-rooted spanning forests on discretizations of at surfaces and analytic torsion, arXiv preprint (2020). arXiv:2001.05162

  17. Forman, R.: Determinants of Laplacians on graphs. Topology 32(1), 35–46 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Friedli, F.: The bundle Laplacian on discrete tori. Ann. Inst. Henri Poincaré D 6(1), 97–121 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Fuglede, B., Kadison, R.V.: Determinant theory in finite factors. Ann. Math. (2) 55, 520–530 (1952)

    MathSciNet  MATH  Google Scholar 

  20. Fukushima, M., Shima, T.: On a spectral analysis for the Sierpiński gasket. Potent. Anal. 1(1), 1–35 (1992)

    MATH  Google Scholar 

  21. Ghez, J.M., Wang, Y.Y., Rammal, R., Pannetier, B., Bellissard, J.: Band spectrum for an electron on a Sierpinski gasket in a magnetic field. Solid State Commun. 64(10), 1291–1294 (1987)

    ADS  Google Scholar 

  22. Hinz, M.: Magnetic energies and Feynman-Kac-Itô formulas for symmetric Markov processes. Stoch. Anal. Appl. 33(6), 1020–1049 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Hinz, M., Rogers, L.: Magnetic fields on resistance spaces. J. Fractal Geom. 3(1), 75–93 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Hinz, M., Teplyaev, A.: Dirac and magnetic Schrödinger operators on fractals. J. Funct. Anal. 265(11), 2830–2854 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Hofstadter, D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14(6), 2239 (1976)

    ADS  Google Scholar 

  26. Hyde, J., Kelleher, D., Moeller, J., Rogers, L., Seda, L.: Magnetic Laplacians of locally exact forms on the Sierpinski gasket. Commun. Pure Appl. Anal. 16(6), 2299–2319 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Kassel, A., Kenyon, R.: Random curves on surfaces induced from the Laplacian determinant. Ann. Probab. 45(2), 932–964 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Kassel, A., Lévy, T.: Covariant Symanzik identities, arXiv preprint (2020). arXiv:1607.05201v2

  29. Kassel, A., Wilson, D.B.: The looping rate and sandpile density of planar graphs. Am. Math. Mont. 123(1), 19–39 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Kempkes, S.N., Slot, M.R., Freeney, S.E., Zevenhuizen, S.J.M., Vanmaekelbergh, D., Swart, I., Morais Smith, C.: Design and characterization of electrons in a fractal geometry. Nat. Phys. 15(2), 127 (2019)

    Google Scholar 

  31. Kenyon, R.: Spanning forests and the vector bundle Laplacian. Ann. Probab. 39(5), 1983–2017 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Kigami, J.: Harmonic analysis for resistance forms. J. Funct. Anal. 204(2), 399–444 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Kutnjak-Urbanc, B., Zapperi, S., Milošević, S., Stanley, H.E.: Sandpile model on the Sierpinski gasket fractal. Phys. Rev. E 54, 272–277 (1996)

    ADS  Google Scholar 

  34. Lawler, G.F., Trujillo Ferreras, J.A.: Random walk loop soup. Trans. Am. Math. Soc. 359(2), 767–787 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Lyons, R.: Asymptotic enumeration of spanning trees. Combin. Probab. Comput. 14(4), 491–522 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Lyons, R.: Identities and inequalities for tree entropy. Combin. Probab. Comput. 19(2), 303–313 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Majumdar, S.N., Dhar, D.: Equivalence between the Abelian sandpile model and the \(q\rightarrow 0\) limit of the Potts model. Phys. A Stat. Mech. Appl. 185(1–4), 129–145 (1992)

    Google Scholar 

  38. Malozemov, L., Teplyaev, A.: Self-similarity, operators and dynamics. Math. Phys. Anal. Geom. 6(3), 201–218 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Matter, M.: Abelian Sandpile Model on randomly rooted graphs, Ph.D. Thesis, 2012. Université Genève. https://archive-ouverte.unige.ch/unige:21849

  40. Milnor, J.: Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ (2006)

  41. Pemantle, R.: Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19(4), 1559–1574 (1991)

    MathSciNet  MATH  Google Scholar 

  42. Quint, J.-F.: Harmonic analysis on the Pascal graph. J. Funct. Anal. 256(10), 3409–3460 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Rammal, R., Toulouse, G.: Spectrum of the Schrödinger equation on a self-similar structure. Phys. Rev. Lett. 49(16), 1194–1197 (1982)

    ADS  MathSciNet  Google Scholar 

  44. Rammal, R., Toulouse, G.: Random walks on fractal structures and percolation clusters. J. Phys. Lett. 44(1), 13–22 (1983)

    Google Scholar 

  45. Shima, T.: On eigenvalue problems for Laplacians on p.c.f. self-similar sets. Jpn. J. Indust. Appl. Math. 13(1), 1–23 (1996)

    MathSciNet  MATH  Google Scholar 

  46. Shinoda, M., Teufl, E., Wagner, S.: Uniform spanning trees on Sierpiński graphs. ALEA Lat. Am. J. Probab. Math. Stat. 11(1), 737–780 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Strichartz, R.S.: Differential Equations on Fractals. A Tutorial. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  48. Teplyaev, A.: Spectral analysis on infinite Sierpiński gaskets. J. Funct. Anal. 159(2), 537–567 (1998)

    MathSciNet  MATH  Google Scholar 

  49. Teufl, E., Wagner, S.: The number of spanning trees in self-similar graphs. Ann. Comb. 15(2), 355–380 (2011)

    MathSciNet  MATH  Google Scholar 

  50. UConn Math REU program, Magnetic spectrum on the Sierpinski gasket. https://mathreu.uconn.edu/wp-content/uploads/sites/1724/2016/05/sierpinski-gasket.png. Accessed 09 May 2019

  51. Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pp. 296–303, 1996

Download references

Acknowledgements

We thank Alexander Teplyaev and Richard Kenyon for useful conversations during the initial stage of this work; Quan Vu for his early numerical contributions to cycle-rooted spanning forests on the Sierpinski gasket; and the anonymous referee for critical comments which helped us improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe P. Chen.

Additional information

Communicated by S. Chatterjee.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is an outgrowth of the High Honors Bachelor’s thesis by the second-named author at Colgate University, advised by the first-named author. We acknowledge partial financial support from the Research Council of Colgate University (Grant No. 826568), the Simons Foundation (Collaboration Grant for Mathematicians #523544), and the National Science Foundation (DMS-1855604).

Appendix A: Numerical Approximation of the Filled Julia Set in Fig. 6

Appendix A: Numerical Approximation of the Filled Julia Set in Fig. 6

To numerically generate the filled Julia set of the map \({\mathcal {U}}\), we initialize with a uniform sample of points \(w=(\alpha ,\lambda )\) in the rectangle \([0,1]\times [0,2]\). We then discard points w for which \(|{\mathcal {U}}^k(w)|\) exceeds a threshold (10) after \(k(=20)\) iterations, and keep those points which remain bounded within. Below is a working MATLAB code.

figure v

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J.P., Guo, R. Spectral Decimation of the Magnetic Laplacian on the Sierpinski Gasket: Solving the Hofstadter–Sierpinski Butterfly. Commun. Math. Phys. 380, 187–243 (2020). https://doi.org/10.1007/s00220-020-03850-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03850-w

Navigation