Skip to main content
Log in

Stress-Structure Relationship of the Reversible Associating Polymer Network under Start-up Shear Flow

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We adopt Langevin dynamics to explore the stress-structure relationship of telechelic reversible associating polymer gel during startup shear flow, with shear strengths varying from Wi = 12.6 to Wi = 12640. At weak shear flow Wi = 12.6, the shear stress proportionally increases with shear strain at short times, followed by a strain hardening behavior and then passes through a maximum (σmax, γmax) and finally decreases until it reaches the steady state. During the evolution of stress, the gel network is only slightly broken and essentially maintains its framework, and the strain hardening behavior originates from the excessive stretching of chains. On the other hand, the stress-strain curve at intermediate shear flow Wi = 505.6 shows two differences from that at Wi = 12.6, namely, the absence of strain hardening and a dramatic increase of stress at large strains, which is caused by the rupture of gel network at small strains and the network recovery at large strains, respectively. Finally, at very strong shear flow Wi = 6319.7, the gel network is immediately broken by shear flow and the stress-strain curve exhibits similar behaviors to those of classical polymeric liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brassinne, J.; Fustin, C. A.; Gohy, J. F. Polymer gels constructed through metal-ligand coordination. J. Inorg. Organomet. Polym. Mater. 2013, 23, 24–40.

    CAS  Google Scholar 

  2. Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 2001, 101, 4071–4097.

    CAS  PubMed  Google Scholar 

  3. Seiffert, S.; Sprakel, J. Physical chemistry of supramolecular polymer networks. Chem. Soc. Rev. 2012, 41, 909–930.

    CAS  PubMed  Google Scholar 

  4. Gold, B. J.; Hovelmann, C. H.; Luhmann, N.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D. The microscopic origin of the rheology in supramolecular entangled polymer networks. J. Rheol. 2017, 61, 1211–1226.

    CAS  Google Scholar 

  5. Louhichi, A.; Jacob, A. R.; Bouteiller, L.; Vlassopoulos, D. Humidity affects the viscoelastic properties of supramolecular living polymers. J. Rheol. 2017, 61, 1173–1182.

    CAS  Google Scholar 

  6. Chen, Q.; Huang, C. W.; Weiss, R. A.; Colby, R. H. Viscoelasticity of reversible gelation for ionomers. Macromolecules 2015, 48, 1221–1230.

    CAS  Google Scholar 

  7. Noro, A.; Matsushita, Y.; Lodge, T. P. Gelation mechanism of thermoreversible supramacromolecular ion gels via hydrogen bonding. Macromolecules 2009, 42, 5802–5810.

    CAS  Google Scholar 

  8. Li, J. H.; Lewis, C. L.; Chen, D. L.; Anthamatten, M. Dynamic mechanical behavior of photo-cross-linked shape-memory elastomers. Macromolecules 2011, 44, 5336–5343.

    CAS  Google Scholar 

  9. Michal, B. T.; Jaye, C. A.; Spencer, E. J.; Rowan, S. J. Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Lett. 2013, 2, 694–699.

    CAS  Google Scholar 

  10. Li, J. H.; Viveros, J. A.; Wrue, M. H.; Anthamatten, M. Shapememory effects in polymer networks containing reversibly associating side-groups. Adv. Mater. 2007, 19, 2851–2855.

    CAS  Google Scholar 

  11. Ware, T.; Hearon, K.; Lonnecker, A.; Wooley, K. L.; Maitland, D. J.; Voit, W. Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromolecules 2012, 45, 1062–1069.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dong, J.; Weiss, R. A. Shape memory behavior of zinc oleate-filled elastomeric ionomers. Macromolecules 2011, 44, 8871–8879.

    CAS  Google Scholar 

  13. Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed. 2003, 22, 4640–4643.

    Google Scholar 

  14. Du, Z. K.; Dong, R. F.; Ke, K.; Ren, B. Y. Multiple stimuli-responsive rheological behavior of a functionalized telechelic associative model polymer in aqueous solution. J. Rheol. 2018, 22, 1233–1243.

    Google Scholar 

  15. Du, Z. K.; Ren, B. Y.; Chang, X. Y.; Dong, R. F.; Tong, Z. An endbifunctionalized hydrophobically modified ethoxylated urethane model polymer: multiple stimuli-responsive aggregation and rheology in aqueous solution. Macromolecules 2017, 50, 1688–1699.

    CAS  Google Scholar 

  16. Li, D.; Zhang, X. Y.; Yao, J. F.; Simon, G. P.; Wang, H. T. Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chem. Commun. 2011, 47, 1710–1712.

    CAS  Google Scholar 

  17. Amaral, A. J. R.; Pasparakis, G. Stimuli responsive self-healing polymers: gels, elastomers and membranes. Polym. Chem. 2017, 8, 6464–6484.

    CAS  Google Scholar 

  18. Chawla, P.; Srivastava, A. R.; Pandey, P.; Chawla, V. Hydrogels: a journey from diapers to gene delivery. Curr. Med. Chem. 2014, 14, 154–167.

    CAS  Google Scholar 

  19. Chen, Y. L.; Kushner, A. M.; Williams, G. A.; Guan, Z. B. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 2012, 4, 467–472.

    CAS  PubMed  Google Scholar 

  20. Cao, P. F.; Li, B. R.; Hong, T.; Townsend, J.; Qiang, Z.; Xing, K. Y.; Vogiatzis, K. D.; Wang, Y. Y.; Mays, J. W.; Sokolov, A. P.; Saito, T. Superstretchable, self-healing polymeric elastomers with tunable properties. Adv. Funct. Mater. 2018, 28, 1800741.

    Google Scholar 

  21. Yan, T. Z.; Schroter, K.; Herbst, F.; Binder, W. H.; Thurn-Albrecht, T. Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network. Sci. Rep. 2016, 6, 32356.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sottos, N. R.; Moore, J. S. Materials chemistry spot-on healing. Nature 2011, 472, 299–300.

    CAS  PubMed  Google Scholar 

  23. Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–980.

    CAS  PubMed  Google Scholar 

  24. Schmolke, W.; Perner, N.; Seiffert, S. Dynamically cross-linked polydimethylsiloxane networks with ambient-temperature self-healing. Macromolecules 2015, 48, 8781–8788.

    CAS  Google Scholar 

  25. Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345–1360.

    CAS  Google Scholar 

  26. Foyt, D. A.; Norman, M. D. A.; Yu, T. T. L.; Gentleman, E. Exploiting advanced hydrogel technologies to address key challenges in regenerative medicine. Adv. Healthc. Mater. 2018, 7, 1700939.

    PubMed Central  Google Scholar 

  27. Lai, S. N.; Zhou, X. Y.; Ouyang, X. F.; Zhou, H.; Liang, Y. J.; Xia, J.; Zheng, B. Artificial cells capable of long-lived protein synthesis by using aptamer grafted polymer hydrogel. ACS Synth. Biol. 2020, 9, 76–83.

    CAS  PubMed  Google Scholar 

  28. Lee, J.; Song, B.; Subbiah, R.; Chung, J. J.; Choi, U. H.; Park, K.; Kim, S. H.; Oh, S. J. Effect of chain flexibility on cell adhesion: semiflexible model-based analysis of cell adhesion to hydrogels. Sci. Rep. 2019, 9, 2463.

    PubMed  PubMed Central  Google Scholar 

  29. Indei, T.; Takimoto, J. Linear viscoelastic properties of transient networks formed by associating polymers with multiple stickers. J. Chem. Phys. 2010, 133, 194902.

    PubMed  Google Scholar 

  30. Kujawa, P.; Audibert-Hayet, A.; Selb, J.; Candau, F. Rheological properties of multisticker associative polyelectrolytes in semidilute aqueous solutions. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 1640–1655.

    CAS  Google Scholar 

  31. Carrillo, J. M. Y.; Chen, W. R.; Wang, Z.; Sumpter, B. G.; Wang, Y. Chain conformation of polymer melts with associating groups. J. Phys. Commun. 2019, 3, 035007.

    CAS  Google Scholar 

  32. Uraneck, C. Telechelic polymers. J. Polym. Sci. 1960, 46, 535–539.

    CAS  Google Scholar 

  33. Lo Verso, F.; Likos, C. N. End-functionalized polymers: versatile building blocks for soft materials. Polymer 2008, 49, 1425–1434.

    CAS  Google Scholar 

  34. Watanabe, H.; Sato, T.; Osaki, K. Concentration dependence of loop fraction in styrene-isoprene-styrene triblock copolymer solutions and corresponding changes in equilibrium elasticity. Macromolecules 2000, 33, 2545–2550.

    CAS  Google Scholar 

  35. Amin, D.; Likhtman, A. E.; Wang, Z. W. Dynamics in supramolecular polymer networks formed by associating telechelic chains. Macromolecules 2016, 49, 7510–7524.

    CAS  Google Scholar 

  36. Park, G. W.; Ianniruberto, G. A new stochastic simulation for the rheology of telechelic associating polymers. J. Rheol. 2017, 61, 1293–1305.

    CAS  Google Scholar 

  37. Tripathi, A.; Tam, K. C.; McKinley, G. H. Rheology and dynamics of associative polymers in shear and extension: theory and experiments. Macromolecules 2006, 39, 1981–1999.

    CAS  Google Scholar 

  38. Thornell, T. L.; Subramaniam, K.; Erk, K. A. The impact of damage accumulation on the kinetics of network strength recovery for a physical polymer gel subjected to shear deformation. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1693–1701.

    CAS  Google Scholar 

  39. Manassero, C.; Castellano, C. Evaluation of viscosity and shear stress in a telechelic polymer when various shear rates are applied. J. Polym. Res. 2014, 22, 621.

    Google Scholar 

  40. Li, S. J.; Chen, J. Z.; Xu, D. H.; Shi, T. F. Topological constraints of network chains in telechelic associative polymer gels. J. Chem. Phys. 2015, 143, 244902.

    PubMed  Google Scholar 

  41. Pereyra, R. G.; Al-Maadeed, M. A.; Carignano, M. A. Modeling polymeric gels: the role of chain flexibility on the structure of physical gels. Express. Polym. Lett 2017, 11, 199–208.

    Google Scholar 

  42. Moghimi, E.; Chubak, I.; Statt, A.; Howard, M. P.; Founta, D.; Polymeropoulos, G.; Ntetsikas, K.; Hadjichristidis, N.; Panagiotopoulos, A. Z.; Likos, C. N.; Vlassopoulos, D. Self-organization and flow of low-functionality telechelic star polymers with varying attraction. ACS Macro Lett. 2019, 8, 766–772.

    CAS  Google Scholar 

  43. Green, M. S.; Tobolsky, A. V. A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 1946, 14, 80–92.

    CAS  Google Scholar 

  44. Lodge, A. S. A network theory of flow birefringence and stress in concentrated polymer solutions. Trans. Faraday Soc. 1956, 52, 120–130.

    CAS  Google Scholar 

  45. Yamamoto, M. The visco-elastic properties of network structure 3. Normal stress effect (weissenberg effect). J. Phys. Soc. Jpn. 1958, 13, 1200–1211.

    Google Scholar 

  46. Tanaka, F.; Edwards, S. F. Viscoelastic properties of physically cross-linked networks 1. Nonlinear stationary viscoelasticity. J. Nonnewton Fluid Mech. 1992, 43, 247–271.

    CAS  Google Scholar 

  47. Tanaka, F. Thermoreversible gelation of associating polymers. Physica A 1998, 257, 245–255.

    CAS  Google Scholar 

  48. Semenov, A. N.; Joanny, J. F.; Khokhlov, A. R. Associating polymers—equilibrium and linear viscoelasticity. Macromolecules 1995, 28, 1066–1075.

    CAS  Google Scholar 

  49. Tanaka, F.; Koga, T. Nonaffine transient network theory of associating polymer solutions. Macromolecules 2006, 39, 5913–5920.

    CAS  Google Scholar 

  50. Sing, M. K.; Ramirez, J.; Olsen, B. D. Mechanical response of transient telechelic networks with many-part stickers. J. Chem. Phys. 2017, 147, 194902.

    PubMed  Google Scholar 

  51. Koga, T.; Tanaka, F.; Kaneda, I.; Winnik, F. M. Stress buildup under start-up shear flows in self-assembled transient networks of telechelic associating polymers. Langmuir 2009, 25, 8626–8638.

    CAS  PubMed  Google Scholar 

  52. Kremer, K.; Grest, G. S.; Carmesin, I. Crossover from rouse to reptation dynamics—a molecular-dynamics simulation. Phys. Rev. Lett 1988, 61, 566–569.

    CAS  PubMed  Google Scholar 

  53. Fu, C. L.; Sun, Z. Y.; An, L. J. Relationship between structural gel and mechanical gel for aba triblock copolymer in solutions: a molecular dynamics simulation. J. Phys. Chem. B 2011, 115, 11345–11351.

    CAS  PubMed  Google Scholar 

  54. Nguyenmisra, M.; Mattice, W. L. Micellization and gelation of symmetrical triblock copolymers with insoluble end blocks. Macromolecules 1995, 28, 1444–1457.

    CAS  Google Scholar 

  55. Rubinstein, M.; Semenov, A. N. Dynamics of entangled solutions of associating polymers. Macromolecules 2001, 34, 1058–1068.

    CAS  Google Scholar 

  56. Amin, D.; Wang, Z. W. Nonlinear rheology and dynamics of supramolecular polymer networks formed by associative telechelic chains under shear and extensional flows. J. Rheol. 2020, 64, 581–600.

    CAS  Google Scholar 

  57. Zhu, Y. L.; Liu, H.; Li, Z. W.; Qian, H. J.; Milano, G.; Lu, Z. Y. Galamost: GPU-accelerated large-scale molecular simulation toolkit. J. Comput. Chem. 2013, 34, 2197–2211.

    CAS  PubMed  Google Scholar 

  58. Zhu, Y. L.; Pan, D.; Li, Z. W.; Liu, H.; Qian, H. J.; Zhao, Y.; Lu, Z. Y.; Sun, Z. Y. Employing multi-GPU power for molecular dynamics simulation: an extension of galamost. Mol. Phys. 2018, 116, 1065–1077.

    CAS  Google Scholar 

  59. Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 1995, 117, 1–19.

    CAS  Google Scholar 

  60. Rapaport, D. C. A. R., Dennis, C. The art of molecular dynamics simulation. Cambridge university press, 2004.

  61. Likhtman, A. E.; Sukumaran, S. K.; Ramirez, J. Linear viscoelasticity from molecular dynamics simulation of entangled polymers. Macromolecules 2007, 40, 6748–6757.

    CAS  Google Scholar 

  62. Auhl, D.; Ramirez, J.; Likhtman, A. E.; Chambon, P.; Fernyhough, C. Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights. J. Rheol. 2008, 52, 801–835.

    CAS  Google Scholar 

  63. Macosko, C. W. Rheology principles, measurements, and applications. Wiley-VCH, Inc., 1994.

  64. Ravindranath, S.; Wang, S. Q. Universal scaling characteristics of stress overshoot in startup shear of entangled polymer solutions. J. Rheol. 2008, 52, 681–695.

    CAS  Google Scholar 

  65. Stephanou, P. S.; Schweizer, T.; Kroger, M. Communication: appearance of undershoots in start-up shear: experimental findings captured by tumbling-snake dynamics. J. Chem. Phys. 2017, 146, 161101.

    PubMed  Google Scholar 

  66. Ramirez-Hernandez, A.; Detcheverry, F. A.; Peters, B. L.; Chappa, V. C.; Schweizer, K. S.; Muller, M.; de Pablo, J. J. Dynamical simulations of coarse grain polymeric systems: Rouse and entangled dynamics. Macromolecules 2013, 46, 6287–6299.

    CAS  Google Scholar 

  67. Schweizer, K. S.; Xie, S. J. Physics of the stress overshoot and chain stretch dynamics of entangled polymer liquids under continuous startup nonlinear shear. ACS Macro Lett. 2018, 7, 218–222.

    CAS  Google Scholar 

  68. Cao, J.; Likhtman, A. E. Simulating startup shear of entangled polymer melts. ACS Macro Lett. 2015, 4, 1376–1381.

    CAS  Google Scholar 

  69. Drozdov, A. D. Finite viscoplasticity of non-affine networks: stress overshoot under shear. Continuum Mech. Thermodyn. 2004, 16, 73–95.

    CAS  Google Scholar 

  70. Erk, K. A.; Shull, K. R. Rate-dependent stiffening and strain localization in physically associating solutions. Macromolecules 2011, 44, 932–939.

    CAS  Google Scholar 

  71. Serero, Y.; Jacobsen, V.; Berret, J. F.; May, R. Evidence of nonlinear chain stretching in the rheology of transient networks. Macromolecules 2000, 33, 1841–1847.

    CAS  Google Scholar 

  72. Berret, J. F.; Serero, Y. Evidence of shear-induced fluid fracture in telechelic polymer networks. Phys. Rev. Lett. 2001, 87, 048303.

    CAS  PubMed  Google Scholar 

  73. Thornell, T. L.; Helfrecht, B. A.; Mullen, S. A.; Bawiskar, A.; Erk, K. A. Fracture-healing kinetics of thermoreversible physical gels quantified by shear rheophysical experiments. ACS Macro Lett. 2014, 3, 1069–1073.

    CAS  Google Scholar 

  74. Snijkers, F.; Vlassopoulos, D. Cone-partitioned-plate geometry for the ares rheometer with temperature control. J. Rheol. 2011, 55, 1167–1186.

    CAS  Google Scholar 

  75. Costanzo, S.; Huang, Q.; Ianniruberto, G.; Marrucci, G.; Hassager, O.; Vlassopoulos, D. Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements. Macromolecules 2016, 49, 3925–3935.

    CAS  Google Scholar 

  76. Xie, S. J.; Schweizer, K. S. Consequences of delayed chain retraction on the rheology and stretch dynamics of entangled polymer liquids under continuous nonlinear shear deformation. Macromolecules 2018, 51, 4185–4200.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21873092, 21774127, 21790341, 21790342), the Key Research Program of Frontier Sciences, CAS (No. QYZDY-SSW-SLH027) and the Jilin Provincial science and technology development program (No. 20190103115JH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Jun Liu, Wen-Sheng Xu, Xiao-Lei Xu or Ji-Zhong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, AQ., Liu, LJ., Xu, WS. et al. Stress-Structure Relationship of the Reversible Associating Polymer Network under Start-up Shear Flow. Chin J Polym Sci 39, 387–396 (2021). https://doi.org/10.1007/s10118-020-2487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2487-6

Keywords

Navigation