Skip to main content
Log in

Effect of microstructure evolution on Lüders strain and tensile properties in an intercritical annealing medium-Mn steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The influence of microstructural characteristics on Lüders strain and mechanical properties was explored by means of altering thermo-mechanical circumstances in an intercritical annealing (IA) medium-Mn Fe-11Mn-0.09C-0.25Si (wt.%) steel. By IA of cold-rolled samples with severe plastic deformation, exclusively equiaxed dual phases were obtained because of active recovery and recrystallization. The equiaxed austenite (\(\upgamma_{\text E}\)) with a larger size and inadequate chemical concentration was more readily transformed into martensite, and subsequent transformation-induced plasticity (TRIP) effect was triggered actively at relatively higher IA temperature, lessening localized deformation. In addition, grown-in dislocations were prone to multiply and migrate around a broad mean free path for coarser equiaxed ferrite (\(\upalpha_{\text E}\)) due to weakening dynamic recovery; therefore, it was the ensuing increased mobility of dislocations instead of reserving plentiful initial dislocation density that facilitated the propagation velocity of Lüders bands and the accumulation of work hardening. In contrast, the bimodal-grained microstructure with lath-like and equiaxed austenite (\(\upgamma_{\text L} + \upgamma_{\text E}\)) satisfactorily contributed to a smaller yield point elongation (YPE) without compromise of comprehensive mechanical properties on the grounds that austenitic gradient stability gave rise to discontinuous but sustainable TRIP effect and incremental work hardening. Hence, Lüders strain is closely related to the absence of work hardening in the region which yields locally. It follows that the decreased stability of retained austenite, favorable mobility of dislocations and the bimodal-grained structure all prominently make up for the insufficiency of work hardening, thereof resulting in a limited YPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Yan, X.H. Liu, T.S. Liang, Y. Zhao, Mater. Sci. Eng. A 712 (2018) 332–340.

    Google Scholar 

  2. S. Yan, T.L. Li, T.S. Liang, J.Q. Chen, Y. Zhao, X.H. Liu, Mater. Sci. Eng. A 758 (2019) 79–85.

    Google Scholar 

  3. B. Hu, H.W. Luo, F. Yang, H. Dong, J. Mater. Sci. Technol. 33 (2017) 1457–1464.

    Google Scholar 

  4. M. Lei, W.J. Hui, J.J. Wang, Y.J. Zhang, X.L. Zhao, J. Iron Steel Res. Int. 27 (2020) 537–548.

    Google Scholar 

  5. Z.H. Cai, S.Y. Jing, H.Y. Li, K.M. Zhang, R.D.K. Misra, H. Ding, Z.Y. Tang, Mater. Sci. Eng. A 739 (2019) 17–25.

    Google Scholar 

  6. S.L. Chen, Z.X. Cao, C. Wang, C.X. Huang, D. Ponge, W.Q. Cao, J. Iron Steel Res. Int. 26 (2019) 1209–1218.

    Google Scholar 

  7. Z.H. Cai, B. Cai, H. Ding, Y. Chen, R.D.K. Misra, Mater. Sci. Eng. A 676 (2016) 263–270.

    Google Scholar 

  8. S. Lee, B.C. De Cooman, Metall. Mater. Trans. A 45 (2014) 5009–5016.

    Google Scholar 

  9. F. Yang, H.W. Luo, E.X. Pu, S.L. Zhang, H. Dong, Int. J. Plast. 103 (2018) 188–202.

    Google Scholar 

  10. A.H. Cottrell, B.A. Bilby, Proceed. Phys. Soc. Sect. A 62 (1949) 49–62.

    Google Scholar 

  11. P.J. Gibbs, B.C. De Cooman, D.W. Brown, B. Clausen, J.G. Schroth, M.J. Merwin, D.K. Matlock, Mater. Sci. Eng. A 609 (2014) 323–333.

    Google Scholar 

  12. J.H. Ryu, D.I. Kim, H.S. Kim, H.K.D.H. Bhadeshia, D.W. Suh, Scripta Mater. 63 (2010) 297–299.

    Google Scholar 

  13. X.G. Wang, L. Wang, M.X. Huang, Mater. Sci. Eng. A 674 (2016) 59–63.

    Google Scholar 

  14. H.W. Luo, H. Dong, M.X. Huang, Mater. Des. 83 (2015) 42–48.

    Google Scholar 

  15. J. Han, S.H. Kang, S.J. Lee, Y.K. Lee, J. Alloy. Compd. 681 (2016) 580–588.

    Google Scholar 

  16. B.H. Sun, F. Fazeli, C. Scott, B.Q. Guo, C. Aranas Jr., X. Chu, M. Jahazi, S. Yue, Mater. Sci. Eng. A 729 (2018) 496–507.

    Google Scholar 

  17. T. Furukawa, H. Huang, O. Matsumura, Mater. Sci. Technol. 10 (1994) 964–970.

    Google Scholar 

  18. S. Lee, Y. Estrin, B.C. De Cooman, Metall. Mater. Trans. A 44 (2013) 3136–3146.

    Google Scholar 

  19. B.H. Sun, F. Fazeli, C. Scott, N. Brodusch, R. Gauvin, S. Yue, Acta Mater. 148 (2018) 249–262.

    Google Scholar 

  20. S. Lee, S.J. Lee, B.C. De Cooman, Scripta Mater. 65 (2011) 225–228.

    Google Scholar 

  21. A. García-Junceda, C. Capdevila, F.G. Caballero, C.G. De Andrés, Scripta Mater. 58 (2008) 134–137.

    Google Scholar 

  22. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, Scripta Mater. 68 (2013) 321–324.

    Google Scholar 

  23. W.S. Li, H.Y. Gao, H. Nakashima, S. Hata, W.H. Tian, Mater. Sci. Eng. A 649 (2016) 417–425.

    Google Scholar 

  24. B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357 (2017) 1029–1032.

    Google Scholar 

  25. J. Han, S.J. Lee, J.G. Jung, Y.K. Lee, Acta Mater. 78 (2014) 369–377.

    Google Scholar 

  26. G.A. Calligaris, T.L.T. Da Silva, A.P.B. Ribeiro, A.O. Dos Santos, L.P. Cardoso, Chem. Phys. Lipids 212 (2018) 51–60.

    Google Scholar 

  27. H. Naji, J. Khalil-Allafi, V. Khalili, Mater. Chem. Phys. 241 (2019) 122317.

    Google Scholar 

  28. P. Chatterjee, A. Chakraborty, A.K. Mukherjee, Spectrochim. Acta Part A Molecul. Biomolecul. Spectrosc. 200 (2018) 33–42.

    Google Scholar 

  29. G.K. Williamson, W.H. Hall, Acta Metall. 1 (1953) 22–31.

    Google Scholar 

  30. P. Scherrer, in: Kolloidchemie Ein Lehrbuch, Springer, 1912, pp. 387–409.

  31. Z.X. Yang, Y. Huang, G.N. Chen, Z.P. Guo, S.Y. Cheng, S.Z. Huang, Sens. Actuators B Chem. 140 (2009) 549–556.

    Google Scholar 

  32. G.K. Williamson, R.E. Smallman, Hilos. Mag. 1 (1956) 34–46.

    Google Scholar 

  33. R. Kishor, L. Sahu, K. Dutta, A.K. Mondal, Mater. Sci. Eng. A 598 (2014) 299–303.

    Google Scholar 

  34. N.H. Van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. Van Der Zwaag, Acta Mater. 53 (2005) 5439–5447.

    Google Scholar 

  35. D.Z. Yang, E.L. Brown, D.K. Matlock, G. Krauss, Metall. Trans. A 16 (1985) 1523–1526.

    Google Scholar 

  36. X. Li, R. Song, N. Zhou, J. Li, Scripta Mater. 154 (2018) 30–33.

    Google Scholar 

  37. C.I. Garcia, A.J. Deardo, Metall. Trans. A 12 (1981) 521–530.

    Google Scholar 

  38. O. Dmitrieva, D. Ponge, G. Inden, J. Millán, P. Choi, J. Sietsma, D. Raabe, Acta Mater. 59 (2011) 364–374.

    Google Scholar 

  39. R.R. Judd, H.W. Paxton, Trans. Met. Soc. AIME 242 (1968) 206–215.

    Google Scholar 

  40. G.A. Roberts, R.F. Mehl, Trans. ASM 31 (1943) 613–650.

    Google Scholar 

  41. J.H. Ryu, J.I. Kim, H.S. Kim, C.S. Oh, H.K.D.H. Bhadeshia, D.W. Suh, Scripta Mater. 68 (2013) 933–936.

    Google Scholar 

  42. W. Roberts, S. Karlsson, Y. Bergström, Mater. Sci. Eng. 11 (1973) 247–254.

    Google Scholar 

  43. S. Lee, S.J. Lee, B.C. De Cooman, Acta Mater. 59 (2011) 7546–7553.

    Google Scholar 

  44. X.G. Wang, B.B. He, C.H. Liu, C. Jiang, M.X. Huang, Materialia 6 (2019) 100288.

    Google Scholar 

  45. H. Matsumoto, H. Yoneda, K. Sato, S. Kurosu, E. Maire, D. Fabregue, T.J. Konno, A. Chiba, Mater. Sci. Eng. A 528 (2011) 1512–1520.

    Google Scholar 

  46. J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao, Scripta Mater. 63 (2010) 815–818.

    Google Scholar 

  47. B. Sun, N. Vanderesse, F. Fazeli, C. Scott, J. Chen, P. Bocher, M. Jahazi, S. Yue, Scripta Mater. 133 (2017) 9–13.

    Google Scholar 

  48. Z.C. Li, X.T. Zhang, Y.J. Mou, R.D.K. Misra, L.F. He, H.P. Li, Mater. Sci. Eng. A 746 (2019) 363–371.

    Google Scholar 

  49. H. Wang, Y. Zhang, G. Yuan, J. Kang, Y. Wang, R.D.K. Misra, G. Wang, Mater. Sci. Eng. A 737 (2018) 176–181.

    Google Scholar 

  50. B.B. He, Z.Y. Liang, M.X. Huang, Scripta Mater. 150 (2018) 134–138.

    Google Scholar 

  51. M. Kamaya, Mater. Charact. 66 (2012) 56–67.

    Google Scholar 

  52. A. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl, W. Bleck, Int. J. Plast. 43 (2013) 128–152.

    Google Scholar 

  53. E. De Moor, D.K. Matlock, J.G. Speer, M.J. Merwin, Scripta Mater. 64 (2011) 185–188.

    Google Scholar 

  54. J.J. Wang, S. Van Der Zwaag, Metall. Mater. Trans. A 32 (2001) 1527–1539.

    Google Scholar 

  55. D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A 113 (1989) 1–41.

    Google Scholar 

  56. J.S. Hayes, R. Keyte, P.B. Prangnell, Mater. Sci. Technol. 16 (2000) 1259–1263.

    Google Scholar 

  57. J.W. Wyrzykowski, M.W. Grabski, Mater. Sci. Eng. 56 (1982) 197–200.

    Google Scholar 

  58. C.Y. Yu, P.W. Kao, C.P. Chang, Acta Mater. 53 (2005) 4019–4028.

    Google Scholar 

  59. V. Patlan, A. Vinogradov, K. Higashi, K. Kitagawa, Mater. Sci. Eng. A 300 (2001) 171–182.

    Google Scholar 

  60. B. Devincre, T. Hoc, L. Kubin, Science 320 (2008) 1745–1748.

    Google Scholar 

  61. P.H. Chang, A.G. Preban, Acta Metall. 33 (1985) 897–903.

    Google Scholar 

  62. M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater. Res. Lett. 4 (2016) 145–151.

    Google Scholar 

  63. X.L. Liu, Q.Q. Xue, W. Wang, L.L. Zhou, P. Jiang, H.S. Ma, F.P. Yuan, Y.G. Wei, X.L. Wu, Materialia 7 (2019) 100376.

    Google Scholar 

  64. X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, PNAS 112 (2015) 14501–14505.

    Google Scholar 

  65. J.L. Ning, Y.T. Zhang, L. Huang, Y.L. Feng, Mater. Des. 120 (2017) 280–290.

    Google Scholar 

  66. B. Yang, H. Vehoff, Acta Mater. 55 (2007) 849–856.

    Google Scholar 

  67. K. Steineder, D. Krizan, R. Schneider, C. Béal, C. Sommitsch, Acta Mater. 139 (2017) 39–50.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Key Research and Development Program of Thirteenth Five-Year Plan Period (Grant No. 2017YFB0304400) and the National Natural Science Foundation of China (Grant No. 51574028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-zhi Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Chen, Wj., Zhao, Zz. et al. Effect of microstructure evolution on Lüders strain and tensile properties in an intercritical annealing medium-Mn steel. J. Iron Steel Res. Int. 28, 762–772 (2021). https://doi.org/10.1007/s42243-020-00498-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00498-7

Keywords

Navigation