Skip to main content
Log in

Curvature and \(L^p\) Bergman Spaces on Complex Submanifolds in \(\pmb {{\mathbb {C}}^N}\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let M be a closed complex submanifold in \({\mathbb {C}}^N\) with the complete Kähler metric induced by the Euclidean metric. Several finiteness theorems on the \(L^p\) Bergman space of holomorphic sections of a given Hermitian line bundle L over M and the associated \(L^2\) cohomology groups are obtained. Some infiniteness theorems are also given in order to test the accuracy of finiteness theorems. As applications we obtain some rigidity results concerning growth of curvatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreotti, A., Grauert, H.: Théor\(\grave{e}\)me de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90, 193–259 (1962)

    Article  MathSciNet  Google Scholar 

  2. Berndtsson, B.: An eigenvalue estimate for the \(\bar{\partial }-\)Laplacian. J. Differ. Geom. 60, 295–313 (2002)

    Article  MathSciNet  Google Scholar 

  3. Berndtsson, B., Ortega, J.: On interpolation and sampling in Hilbert spaces of analytic functions. J. Reine Angew. Math. 464, 109–128 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Chirka, E.M.: Complex Analytic Sets. Kluwer Academic Publishers, Dordrecht (1989)

    Book  Google Scholar 

  5. Colding, T.H., Minicozzi II, W.P.: A Course in Minimal Surfaces. American Mathematical Society, Providence (2011)

    Book  Google Scholar 

  6. Cornalba, M., Griffiths, P.: Analytic cycles and vector bundles on non-compact algebraic varieties. Invent. Math. 28, 1–106 (1975)

    Article  MathSciNet  Google Scholar 

  7. Demailly, J.-P.: Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines. Mémoires de la S. M. F. 19, 1–125 (1985)

    MATH  Google Scholar 

  8. Demailly, J.-P.: Complex Analytic and Differential Geometry, available at Demailly’s home page

  9. Donnelly, H., Fefferman, C.: \(L^2\)-cohomology and index theorem for the Bergman metric. Ann. Math. 118, 593–618 (1983)

    Article  MathSciNet  Google Scholar 

  10. Fujimoto, H.: Value Distribution Theory of the Gauss Map of Minimal Surfaces in \({R/ it}^{m}\) , Aspects of Math. Vol. E21 (K. Diederich Ed.), Vieweg (1993)

  11. Greene, R.E., Wu, H.: Function Theory on Manifolds Which Possess a Pole. Lecture Notes in Mathematics, vol. 699. Springer, Berlin (1979)

    Book  Google Scholar 

  12. Gromov, M.: Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math. Phys. Anal. Geom. 2, 323–415 (1999)

    Article  MathSciNet  Google Scholar 

  13. Kobayashi, S.: Geometry of bounded domains. Trans. Am. Math. Soc. 92, 267–290 (1959)

    Article  MathSciNet  Google Scholar 

  14. Mok, N.: An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties. Bull. Soc. Math. France 112, 197–258 (1984)

    Article  MathSciNet  Google Scholar 

  15. Mok, N.: Bounds on the dimension of \(L^2\) holomorphic sections of vector bundles over complete Kähler manifolds of finite volume. Math. Z. 191, 303–317 (1986)

    Article  MathSciNet  Google Scholar 

  16. Ni, L.: Vanishing theorems on complete Kähler manifolds and applications. J. Differ. Geom. 50, 89–122 (1998)

    Article  Google Scholar 

  17. Ohsawa, T.: \(L^2\) Approaches in Several Complex Variables. Springer Monographs in Mathematics. Springer Nature, Berlin (2018)

    Book  Google Scholar 

  18. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  19. Sakai, F.: Kodaira Dimension of Complement of Divisors, Complex Analysis and Algebraic Geometry, A Correction of Papers Dedicated to K. Kodaira, Iwanami (1977)

    Google Scholar 

  20. Sasaki, T., Shiga, K.: Remarks on the curvature of hypersurfaces in \({{{\mathbb{C}}}}^n\). Nagoya Math. J. 71, 91–95 (1978)

    Article  MathSciNet  Google Scholar 

  21. Stoll, W.: The growth of the area of a transcendental analytic set (I and II), Math. Ann. 156 (1964), 47–98, 144–170

  22. Vitter, A.: On the curvature of complex hypersurfaces. Indiana Univ. Math. J. 23, 813–826 (1974)

    Article  MathSciNet  Google Scholar 

  23. Wu, J., Wang, X.: Poincaré series and very ampleness criterion for pluri-canonical bundles, preprint

  24. Yang, P.: Curvature of complex submanifolds in \({{{\mathbb{C}}}}^n\). J. Differ. Geom. 12, 499–511 (1977)

    Article  Google Scholar 

  25. Yau, S.-T.: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Math. J. 25, 659–670 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Bo-Yong Chen author would like to thank Prof. Takeo Ohsawa for bringing the reference [10] to his attention. The authors are also indebted to the referee for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanpu Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSF grant 11771089 and Gaofeng grant from School of Mathematical Sciences, Fudan University.

Appendix: A Monotonic Property

Appendix: A Monotonic Property

The following result is motivated by Gromov’s work [12].

Proposition 7

Let (Lh) be a Hermitian line bundle over M. Suppose there exists \(\alpha >0\) such that \( \mathrm{Tr}_g(\Theta _h) \le \alpha . \) Then for \(0<p_1<p_2\le \infty \) we have

$$\begin{aligned} H^0_{L^{p_1}} (M,L)\subset H^0_{L^{p_2}} (M,L). \end{aligned}$$

Proof

We first show that for \(0<p<\infty \),

$$\begin{aligned}n H^0_{L^{p}} (M,L) \subset H^0_{L^{\infty }} (M,L). \end{aligned}$$

For every \(s\in H^0_{L^{p}} (M,L)\) we have

$$\begin{aligned} \frac{p}{2} \Delta \log |s|^2_h \ge -2p \mathrm{Tr}_g(\Theta _h)\ge -2p \alpha . \end{aligned}$$

Set \(\tilde{g}= g+ idtd\bar{t}\), \(t\in {{{\mathbb {C}}}}\). It turns out that \(\psi :=\log |s|^p_h+ p\alpha |t|^2\) is subharmonic with respect to \(\tilde{g}\) on \(\widetilde{M}:=M\times {{{\mathbb {C}}}}\), so is \(e^{\psi }\). Since \(\widetilde{M}\) is a minimal submanifold in \({{{\mathbb {C}}}}^{N+1}={{\mathbb {R}}}^{2N+2}\), we infer from the mean-value inequality (cf. [5, Corollary 1.17]) that for every \(x\in M\),

$$\begin{aligned} |s|^p_h(x) = e^{\psi (x,0)}\le & {} \frac{\int _{\widetilde{M}((x,0),1)} e^{\psi (y,t)} \mathrm{d}V_y \mathrm{d}V_t }{\mathrm{vol}_\mathrm{eucl}(B_1\subset {{\mathbb {R}}}^{2n+2})}\\\le & {} \mathrm{const}_n\cdot {\int _{M(x,1)\times {{\mathbb {D}}}} e^{\psi (y,t)} \mathrm{d}V_y \mathrm{d}V_t }\\\le & {} \mathrm{const}_n\cdot \int _{M(x,1)} |s|^p_h \mathrm{d}V \cdot \int _{{\mathbb {D}}} e^{p\alpha |t|^2} \mathrm{d}V_t\\\le & {} \mathrm{const}_{n} \cdot \frac{e^{p\alpha }}{p\alpha } \cdot \int _{M} |s|^p_h \mathrm{d}V, \end{aligned}$$

i.e., \(\Vert s\Vert _{L^\infty }\le \mathrm{const}_{n,p,\alpha } \cdot \Vert s\Vert _{L^p}\).

Now suppose \(s\in H^0_{L^{p_1}} (M,L)\). We have

$$\begin{aligned} \int _{M} |s|^{p_2}_h \mathrm{d}V \le \int _{M} |s|^{p_1}_h \mathrm{d}V \cdot \Vert s\Vert _{L^\infty }^{p_2-p_1} <\infty , \end{aligned}$$

i.e., \(s\in H^0_{L^{p_2}} (M,L)\). \(\square \)

Corollary 6

Suppose there exists \(\alpha >0\) such that

$$\begin{aligned} \mathrm{Scal}_g \ge -\alpha . \end{aligned}$$

Then \(P_{m,L^p}(M)\) is non-decreasing in p.

Remark 10

Fix \(p<2\) and \(k\in {\mathbb {Z}}^+\) with \(kp\ge 2\). Suppose we have

$$\begin{aligned} s_j\in H^0_{L^2}(M,K_M^{\otimes m_j})\subset H^0_{L^{kp}}(M, K_M^{\otimes m_j}),\ \ \ j=1,\ldots ,k. \end{aligned}$$

Then

$$\begin{aligned} s:=s_1\otimes \cdots \otimes s_k\in H^0(M,K_M^{\otimes m}), \ \ \ m=m_1+\cdots +m_k. \end{aligned}$$

Hölder’s inequality gives

$$\begin{aligned} \int _M |s|_{h^{\otimes m}}^{p} \mathrm{d}V\le \prod _{j=1}^k \Vert s_j\Vert _{L^{kp}}^{p}<\infty , \end{aligned}$$

i.e., \(s\in H^0_{L^{p}}(M,K_M^{\otimes m})\). Combined with Proposition 7 we may produce many \(L^p\) pluri-canonical sections from \(L^2\) pluri-canonical sections.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, BY., Xiong, Y. Curvature and \(L^p\) Bergman Spaces on Complex Submanifolds in \(\pmb {{\mathbb {C}}^N}\). J Geom Anal 31, 7352–7385 (2021). https://doi.org/10.1007/s12220-020-00529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00529-5

Keywords

Mathematics Subject Classification

Navigation