Skip to main content
Log in

Heat Treatment Optimization of a γ′-Strengthened Nickel-Based Superalloy Based on Central Composite Design

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermomechanical processing of blades and disks can become challenging when the microstructure of the material consists of a high volume fraction of strengthening phases. In Rene 65, the precipitate volume fraction is 40 pct in the as-forged condition. The microstructure consists of a bimodal/trimodal γ′ precipitate distribution on the grain boundaries and intergranually. In order to control grain size and reduce hardness, primary γ′ should be present on the grain boundaries and the secondary and tertiary precipitates should be coarse. In this work, an attempt to optimize the heat treatments that coarsen those two populations by implementing tools from experimental design is attempted. Two sample categories were examined with different thermomechanical histories, one deformed and one deformed and annealed, in order to verify if the ultimate heat treatment can be applied at different processing steps. The results confirm that there is a definite effect of the original microstructure, since there were different heat treatments that were proven to be the most effective to reduce hardness for the two conditions. Microstructural analysis revealed precipitate splitting and coralloid microstructures were observed for the first time in this alloy. Two mechanisms are proposed for the reduction of hardness depending on the initial microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(adapted in  °C from Ref. [14])

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M.-A. Charpagne, T. Billot, J.-M. Franchet, and N. Bozzolo: in 13th International Symposium on Superalloys, SUPERALLOYS 2016, September 11, 2016—September 15, 2016, vol. 2016-Janua, Minerals, Metals and Materials Society, MINES ParisTech, PSL—Research University, CEMEF—Centre de Mise en Forme des Materiaux, CNRS UMR 7635, CS 10207 rue Claude Daunesse, Sophia Antipolis Cedex; 06904, France Snecma-Safran Group, Technical Department, 171 boulevard de Valmy, Colombes Cedex;, 2016, pp. 417–26.

  2. A. Laurence, J. Cormier, P. Villechaise, T. Billot, J.-M. Franchet, F. Pettinari-Sturmel, M. Hantcherli, F. Mompiou, and A. Wessman: in 8th International Symposium on Superalloy 718 and Derivatives 2014, September 28, 2014October 1, 2014, John Wiley and Sons Inc., Institut Pprime, Physics and Mechanics of Materials Department, ISAE-ENSMA, 1 avenue Clement Ader, Futuroscope—Chasseneuil; 86961, FranceSnecma-Safran Group, Technical Department, 171 boulevard de Valmy—BP 31, Colombes Cedex; 92702, France Safran SA, M, 2014, pp. 333–48.

  3. A. Wessman, A. Laurence, J. Cormier, P. Villechaise, T. Billot, J.-M. Franchet, W. Andrew, L. Aude, C. Jonathan, V. Patrick, B. Thomas, and F. Jean‐Michel: in Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys, vol. 2016-Janua, Minerals, Metals and Materials Society, GE Aviation, One Neumann Way, Cincinnati; OH; 45215, United StatesInstitut Pprime, UPR CNRS 3346, CNRS, Universite de Poitiers—ENSMA, Physics and Mechanics of Materials Department, ISAE-ENSMA, 1 avenue Clement Ader, Futuroscope—Chasseneuil; 86961, Fra, 2016, pp. 793–800.

  4. T. Wojcik, M. Rath, and E. Kozeschnik: Mater. Sci. Technol., 2018, vol. 34, pp. 1558–64.

    Article  CAS  Google Scholar 

  5. C.M. Katsari, H. Che, D. Guye, A. Wessman, and S. Yue: in Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, E. Ott, X. Liu, J. Andersson, Z. Bi, K. Bockenstedt, I. Dempster, J. Groh, K. Heck, P. Jablonski, M. Kaplan, D. Nagahama, and C. Sudbrack, eds., Springer International Publishing Ag, [Katsari, C. M.; Che, H.; Guye, D.; Yue, S.] McGill Univ, Dept Mat Engn, Wong Bldg,3610 Univ, Montreal, PQ H3A 0C5, Canada. [Wessman, A.] GE Aviat, Struct Mat Dev, One Neumann Way, Cincinnati, OH 45215 USA. Katsari, CM (reprint author), McGill Univ, Dept, 2018, pp. 629–41.

  6. C.M. Katsari, A. Wessman, and S. Yue: J. Mater. Eng. Perform., 2020, pp. 1–9.

  7. T.M. Pollock and S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361–74.

    Article  CAS  Google Scholar 

  8. O.R. Terrazas, M.E. Zaun, R.S. Minisandram, and M.L. Lasonde: in 9th International Symposium on Superalloy 718 and Derivatives: Energy, Aerospace, and Industrial Applications, June 3, 2018June 6, 2018, vol. 2018-June, Springer International Publishing, ATI Specialty Materials, 4374 Lancaster Highway, Richburg; SC; 29729, United States ATI Specialty Materials, 2020 Ashcraft Avenue, Monroe; NC; 28110, United States Wilmot; NH; 28110, United States, 2018, pp. 977–86.

  9. C.M. Katsari, H. Che, B. Turner, A. Wessman, and S. Yue: in Materials Science and Technology Conference and Exhibition 2017, MS and T 2017, October 8, 2017–October 12, 2017, vol. 2, Association for Iron and Steel Technology, AISTECH, Materials Engineering Dept., McGill University, Wong Building, 3610 University, Montreal; QC; H3A 0C5, Canada GE Aviation, Structural Materials Development, One Neumann Way, Cincinnati; OH; 45215-1988, United States, 2017, pp. 1375–81.

  10. B.J. Bond, C.M. O’Brien, J.L. Russell, J.A. Heaney, and M.L. Lasonde: in 8th International Symposium on Superalloy 718 and Derivatives 2014, September 28, 2014–October 1, 2014, John Wiley and Sons Inc., ATI Specialty Materials, 2020 Ashcraft Ave., Monroe; NC; 28110, United States General Electric Aviation, One Neumann Way, Cincinnati; OH; 45215, United States, 2014, pp. 107–18.

  11. P.D. Berger, R.E. Maurer, and G.B. Celli: in Experimental Design, Springer, New York: 2018, pp. 533–84.

    Book  Google Scholar 

  12. D.C.L.B.-D.O.E. Montgomery: Design and Analysis of Experiments, Wiley 2017.

  13. Minitab 18 Support: Overview for Create Response Surface Design (Central Composite).

  14. A.E. Wessman: University of Cincinnati, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1467126769.

  15. C.M. Katsari, A. Wessman, and S. Yue: Heat Treat 1930th Heat Treat. Soc. Conf. Expo., 2019.

  16. D.U. Furrer and H.-J. Fecht: Scr. Mater., 1999, vol. 40, pp. 1215–20.

    Article  CAS  Google Scholar 

  17. A. Powell, K. Bain, A. Wessman, D. Wei, T. Hanlon, and D. Mourer: in Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys, Wiley Online Library, 2016, pp. 187–97.

  18. L. Zhuo, M. Huang, F. Wang, J. Xiong, J. Li, and J. Zhu: Mater. Lett., 2015, vol. 139, pp. 232–6.

    Article  CAS  Google Scholar 

  19. J.D. Nystrom, T.M. Pollock, W.H. Murphy, and A. Garg: Metall. Mater. Trans. A, 1997, vol. 28, pp. 2443–52.

    Article  Google Scholar 

  20. M. Doi: Mater. Trans. JIM, 1992, vol. 33, pp. 637–49.

    Article  CAS  Google Scholar 

  21. Y.S. Yoo, D.Y. Yoon, Henry, and MF: Met. Mater., 1995, vol. 1, pp. 47–61.

    CAS  Google Scholar 

  22. M. Doi, D. Miki, T. Moritani, and T. Kozakai: Superalloys 2004, 2004, pp. 109–14.

    Article  Google Scholar 

  23. M. Doi and T. Miyazaki: Superalloys 1984, 1984, pp. 543–52.

    Google Scholar 

  24. Y.S. Yoo: Scr. Mater., 2005, vol. 53, pp. 81–5.

    Article  CAS  Google Scholar 

  25. M. Doi, T. Miyazaki, and T. Wakatsuki: Mater. Sci. Eng., 1985, vol. 74, pp. 139–45.

    Article  CAS  Google Scholar 

  26. E.I. Galindo-Nava, L.D. Connor, and C.M.F. Rae: Acta Mater., 2015, vol. 98, pp. 377–90.

    Article  CAS  Google Scholar 

  27. J. MacSleyne, M.D. Uchic, J.P. Simmons, and M. De Graef: Acta Mater., 2009, vol. 57, pp. 6251–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Natural Science and Engineering Council of Canada, GE Aviation, Bromont, Quebec Canada, the Consortium de Recherche et D’innovation en Transformation Métallique and the McGill Engineering Doctoral Award (to C.M. Katsari) is gratefully acknowledged. Dr. Ozan Kokkilic from McGill University and Dr. Oluwole A. Olufayo from Ecole Technologie Superieure are acknowledged for the useful discussions regarding Response Surface Methods. The authors would also like to thank Mr. Martin Therer from GE Aviation, Bromont for his valuable inputs on this work from the industrial point of view.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Maria Katsari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 04, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsari, C.M., Wessman, A. & Yue, S. Heat Treatment Optimization of a γ′-Strengthened Nickel-Based Superalloy Based on Central Composite Design. Metall Mater Trans A 51, 5806–5817 (2020). https://doi.org/10.1007/s11661-020-05948-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05948-1

Navigation