Skip to main content
Log in

Mechanistic Modeling of Strain Hardening in Ni-Based Superalloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article presents a mechanistic approach for modeling the strain hardening response of polycrystalline Ni-based superalloys such as ME3, RR 1000, Alloy 720 Li, and IN 100. The mechanistic approach considers strain hardening in Ni-based superalloys in two stages: (a) self-hardening of individual {111} slip systems in the low plastic strain regime and (2) latent hardening of multiple {111} slip systems in the high plastic strain regime. Both strain hardening regimes have been modeled on the basis of interactions of superkinks with Kear–Wilsdorf locks and related to pertinent microstructural parameters such as the volume fractions of γ′ precipitates, grain orientation, and dislocation substructure. The mechanistic strain hardening model predicts that the strain hardening exponents in both the low plastic strain (n1) and the high plastic strain (n2) regimes increase with increasing values of the sum of the squares of the volume fractions of the primary and secondary γ′ precipitates, the number of {111} and {010} slip systems activated, and the critical height of the superkinks. A comparison of model predictions against experimental strain hardening exponents indicates good agreement between model predictions and experimental data. Implications of the operative strain hardening mechanisms during low-cycle fatigue and high-cycle fatigue are elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Modified from Sun.[27]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock: Metall. Mater. Trans. A, 2009, vol. 40A (7), pp. 1588–03, https://doi.org/10.1007/s11661-009-9858-5.

    Article  CAS  Google Scholar 

  2. T.A. Parthasarathy, S.I. Rao, and D.M. Dimiduk: Superalloys 2004, TMS (The Minerals, Metals and Materials Society), Warrendale, PA, 2004, pp. 887–96.

  3. L. Tabourot, M. Fivel, and E. Rauch: Mater. Sci. Eng. A, 1997, vols. 234–236, pp. 639–42.

    Google Scholar 

  4. W.W. Milligan, E.L. Orth, J.J. Schirra, and M.F. Savage: Superalloys 2004, TMS (The Minerals, Metals and Materials Society), Warrendale, PA, 2004, pp. 331–39.

  5. W. Ramberg and W.R. Osgood: Technical Note 503: Determination of Stress–Strain Curves by Three Parameters, National Advisory Committee on Aeronautics (NACA), 1941.

  6. T.P. Gabb, J. Gayda, J. Telesman, and A. Garg: Superalloys 2008, TMS (The Minerals, Metals and Materials Society), Warrendale, PA, 2008, pp. 121–30.

  7. B. A. Lerch and V. Gerold: Acta Metall., 1985, vol. 33, No. 9, pp. 1709–1716.

    CAS  Google Scholar 

  8. B. A. Lerch and V. Gerold: Metall. Trans. A, 1987, vol. 18A, pp. 2135–2141.

    CAS  Google Scholar 

  9. K. Gopinath, A.K. Gogia, S.V. Kamat, B. Balamuralikrishnan, and U. Ramamurty: Metall. Mater. Trans. A, 2008, vol. 39A (10), pp. 340–50.

    Google Scholar 

  10. K. S. Chan: Metall. Mater. Trans. A, 2018, 49A, p. 5353–5367.

    Google Scholar 

  11. E. Voce: J. Inst. Met., 1948, vol. 74, pp. 537–62.

    CAS  Google Scholar 

  12. H. Mecking and Y. Estrin: Microstructure-Related Constitutive Modelling of Plastic Deformation, Eighth International Symposium on Metallurgy and Material Science, Riso, Denmark, 1987.

  13. K.S. Chan: J. Eng. Mater. Perform. https://doi.org/10.1007/s11665-020-04678-0, Published on-line, Feb 2020.

  14. B.H. Kear and H.G.F. Wilsdorf: Trans. Metall. Soc. AIME, 1962, vol. 224, pp. 382–86.

    CAS  Google Scholar 

  15. D. Caillard and V. Paidar: Acta Mater., 1996, vol. 44 (7), pp. 2759–71.

    CAS  Google Scholar 

  16. D. Caillard: Acta Mater., 1996, vol. 44 (7), pp. 2773–85.

    CAS  Google Scholar 

  17. Caillard D (2001) Mater Sci Eng A 319–321:74–83

    Google Scholar 

  18. M. J. Mills, N. Baluc, and H. P. Karnthaler: Mater. Res. Soc. Symp. 1989, vol. 133, pp. 203–208.

    Google Scholar 

  19. M.J. Mills and D.C. Chrzan: Acta Metall. Mater., 1992, vol. 40 (11), pp. 3051–64.

    CAS  Google Scholar 

  20. K.J. Hemker, M.J. Mills, and W.D. Nix: J. Mater. Res., 1992, vol. 7 (8), pp. 2059–69.

    CAS  Google Scholar 

  21. Sun YQ, Hazzledine PM (1988) Philos Mag A, 58:603–618

    CAS  Google Scholar 

  22. Bontemps C, Veyssiere P (1990) Philos Mag Lett 61:259–267

    CAS  Google Scholar 

  23. A. Couret, Y. Sun, and P. M. Hazzledine: Mater. Res. Soc. Symp. 1991, vol. 213, pp. 317–322.

    CAS  Google Scholar 

  24. Couret A, Sun YQ, Hirsch PB (1993) Philos Mag A 67:29–50

    CAS  Google Scholar 

  25. P. B. Hirsch and Y. Q. Sun: Mat. Sci. Eng., 1993, A164, pp. 395–400.

    Google Scholar 

  26. B. Tounsi, P. Beauchamp, Y. Mishima, T. Suzuki, and P. Veyssiere: Mat. Res. Soc. Symp., 1989, vol.133, pp. 731–736.

    Google Scholar 

  27. Y. Q. Sun: Acta Mater., 1997, vol. 45, No. 9, pp. 3527–3532.

    CAS  Google Scholar 

  28. S.S. Ezz and P.B. Hirsch: Philos. Mag. A, 1994, vol. 69 (1), pp. 105–27.

    CAS  Google Scholar 

  29. E.M. Knoche: Ph.D. Thesis, University of Manchester, School of Materials, UK, 2011.

  30. V. Singh, M. Sundararanman, W. Chen, and R. P. Wahi: Metall. Trans. A, 1991, vol. 22A, pp. 499–506.

    CAS  Google Scholar 

  31. S. Birosea: IOP Conf. Series. Mater. Sci. and Eng, 2015, vol. 82, 012033. https://doi.org/10.1088/1757-899x/82/1/012033.

    Article  Google Scholar 

  32. T. P. Gabb, A. Garg, D. L. Ellis, and K. M O’Connor: Detailed Microstructural Characterization of the Disk Alloy ME3, NASA/TM-2004-213066, Glenn Research Center, Cleveland, OH, May 2004.

    Google Scholar 

  33. J.F.W. Bishop and R.A. Hill: Philos. Mag., 1951, vol. 42 (327), pp. 414–27.

    CAS  Google Scholar 

  34. Hertzberg RW (1976) Deformation and Fracture Mechanics of Engineering Materials. Wiley, New York

    Google Scholar 

  35. H. Mecking, U. F. Kocks, and C. Hartig: Scripta Mater., 1996, vol. 35, No. 4, pp. 465–471.

    CAS  Google Scholar 

  36. E.O. Hall: Proc. Phys. Soc. B, 1951, vol. 64 (9), pp. 742–47.

    Google Scholar 

  37. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  38. L.A. Gypen and A. Deruyttere: J. Mater. Sci., 1977, vol. 12,pp. 1028–33.

    CAS  Google Scholar 

  39. W. Huther and B. Reppich: Z. Metallkd., 1978, vol. 69, pp. 628–34, 1114

  40. D.M. Collins and H.J. Stone: Int. J. Plast., 2014, vol. 54, pp. 96–112.

    CAS  Google Scholar 

  41. Brown LM, Ham RK (1971) In: Kelly A, Nicholson RB (eds) Strengthening Methods in Crystals. Elsevier Publishing Co. Ltd., Essex, pp 9–135

    Google Scholar 

  42. M. H. Yoo: Acta Metall., 1987, vol. 35, No. 7, pp. 1559–1569.

    CAS  Google Scholar 

  43. C. L. Fu and M. H. Yoo: Mat. Res. Symp. Proc., 1989, vol. 133, pp. 81–86.

    Google Scholar 

  44. Scheunemann-Frerker G, Gabrisch H, Feller-Kniepmeier M (1992) Philos Mag A 65:1353–1368

    CAS  Google Scholar 

  45. C. Zener: Elasticity and Anelasticity of Metals, University of Chicago, Chicago, 1948.

    Google Scholar 

  46. F.C. Frank and W.T. Read: Phys. Rev., 1950, vol. 79, pp. 722–23.

    CAS  Google Scholar 

  47. Y. Ru, S. Li, J. Zhou, Y. Pei, H. Wang, S. Gong, and H. Xu: Sci Rep, 2016, vol. 6, 29941. https://doi.org/10.1038/srep29941.

    Article  CAS  Google Scholar 

  48. W. M. Lomer: Phil. Mag., 1951, vol. 42, pp. 1327 - 1331.

    CAS  Google Scholar 

  49. A. H. Cotterell: Dislocation and Plastic Flow in Crystals, Oxford University, UK, 1953.

    Google Scholar 

  50. N. Thompson: Proc. Phys. Soc. B, 1953, vol. 66, No. 6, pp. 481 - 492.

    Google Scholar 

  51. H. Yang, Z. Li, and M. Huang: Computational Mater. Sci., 2013, vol. 75, pp. 52–59.

    CAS  Google Scholar 

  52. B. H. Kear, J. M. Oblak, and A. F. Giamei: Metall. Trans., 1970, vol. 1, pp. 2477–2486.

    CAS  Google Scholar 

  53. H. R. Pak, T. Saburi, and S. Nenno: Scripta Metall., 1976, vol. 10, pp. 1081–1085.

    CAS  Google Scholar 

  54. K. Suzuki, M. Ichihara, and S. Takeuchi: Acta Metall., 1979, vol. 27, pp. 193–200.

    CAS  Google Scholar 

  55. I. Baker and E. M. Schulson: Phys. Stat. Sol. A, 1985, vol. 89, pp. 163–172.

    CAS  Google Scholar 

  56. A. Chiba and S. Hanada; Philos. Mag., A, 1994, vol. 69, pp. 751–65.

  57. M. F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424.

    CAS  Google Scholar 

  58. K. U. Snowden: Acta Metall., 1963, vol. 11, pp. 675–684.

    Google Scholar 

  59. M. F. Kanninen and C. H. Popelar: Advanced Fracture Mechanics, 1st Edition, Oxford University Press, Oxford, UK, 1985, pp. 126 -128.

    Google Scholar 

  60. Southwest Research Institute: DARWIN User’s Manual, Southwest Research Institute, San Antonio, TX, 2008.

    Google Scholar 

  61. A. Staroselsky and B. N. Cassenti: Mech. Mater., 2010, vol. 42, pp. 945–959.

    Google Scholar 

  62. Z.-L. Zhan and J. Tong: Mech. Mater., 2007, vol. 39, pp. 64–72.

    Google Scholar 

  63. Z.-L. Zhan and J. Tong: Mech. Mater., 2007, vol. 39, pp. 73–80.

    Google Scholar 

  64. Lin YC, Chen X-M, Wen D-X, Chen M-S (2014) Comput Mater Sci 83:282–289

    CAS  Google Scholar 

  65. X. Tang, B. Wang, Y. Huo, W. Ma, J. Zhou, H. Ji, and X. Fu: Mat. Sci. Eng. A, 2016, vol. 662, pp. 54–64.

    CAS  Google Scholar 

  66. W. Ren and T. Nicholas: Mater. Sci. Eng., 2002, vol. A332, pp. 236–248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwai S. Chan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 6, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, K.S. Mechanistic Modeling of Strain Hardening in Ni-Based Superalloys. Metall Mater Trans A 51, 5653–5666 (2020). https://doi.org/10.1007/s11661-020-05965-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05965-0

Navigation