Skip to main content
Log in

Multi-axial Fatigue of Head-Hardened Pearlitic and Austenitic Manganese Railway Steels: A Comparative Study

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Switches and crossings (S&Cs) in rail networks suffer from damage and deformation due to severe loading of their complex geometric shapes. This article presents a comparative study of the cyclic deformation characteristics and fatigue behavior of two typical crossing materials, namely head-hardened pearlitic steel and Hadfield manganese steel, as well as the associated microstructural changes. Both uniaxial and biaxial loadings (proportional and non-proportional) are studied. The pearlitic steel endured more cycles to failure for a given strain amplitude compared to the manganese steel. The cyclic response of manganese steel shows significant hardening whereas softening was observed for the pearlitic steel except under biaxial non-proportional loading. The microstructures developed in the two types of steels after deformation are characterized by optical (OM) and transmission electron microscopy (TEM). TEM micrographs reveal that the deformed microstructure of the pearlitic steel consists of threading dislocations and dislocation tangles in the ferrite lamellae. The microstructures in the manganese steel after the different loadings are composed of dislocation cells with dislocation tangles inside, intersected by straight stacking fault lamellae. The observed microstructures are related to the results of the mechanical test, and the suitability of the steels for use in S&Cs is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time because of technical or time limitations.

References

  1. [1] A. V. Olver: Proceedings of the Institution of Mechanical Engineers, Part J: J. of Tribol., 2005, vol. 219, pp. 313-30.

    Article  CAS  Google Scholar 

  2. [2] D. L. McDowell: Int. J. Plast., 1995, vol. 11(4), pp. 397-421.

    Article  CAS  Google Scholar 

  3. [3] R. I. Stephens, A. Fatemi, R. R. Stephens and H. O. Fuchs: Metal fatigue in engineering, John Wiley and Sons, New Jersey, NJ, 2001.

    Google Scholar 

  4. [4] E. G. Astafurova, M. S. Tukeeva, G. G. Zakharova, E. V. Melnikov and H. J. Maier: Mater. Charact., 2011, vol. 62, pp. 588-92.

    Article  CAS  Google Scholar 

  5. [5] C. Efstathiou and H. Sehitoglu: Acta Mater., 2010, vol. 58, pp. 1479-88.

    Article  CAS  Google Scholar 

  6. [6] I. Karaman, H. Sehitoglu, Y. I. Chumlyakov and H. J. Maier: Act. Mater., 2000, vol. 48(6), pp. 1345-59.

    Article  CAS  Google Scholar 

  7. [7] W. S. Owen and M. Grujicic: Act. Mater., 1999, vol. 47, pp. 111-26.

    Article  CAS  Google Scholar 

  8. [8] P. H. Adler, G. B. Olson and W. S. Owen: Metall. Trans. A, 1986, vol. 17, pp. 1725-37.

    Article  Google Scholar 

  9. [9] J. Kang, F. C. Zhang, X. Y. Long and B. Lv: Mater. Sci. Eng. A, 2014, vol. 591, pp. 59-68.

    Article  CAS  Google Scholar 

  10. [10] D. Rittel and I. Roman: Int. J. Fatigue, 1989, vol. 11(3), pp. 177-82.

    Article  CAS  Google Scholar 

  11. [11] M. Schilke, J. Ahlström and B. Karlsson: Procedia Eng., 2010, vol. 2, pp. 623-28.

    Article  CAS  Google Scholar 

  12. [12] C. Chen, B. Lv, F. Wang and F. Zhang: Mater. Sci. Eng. A, 2017, vol. 695, pp. 144-53.

    Article  CAS  Google Scholar 

  13. Jiang Y, Sehitoglu H (1999) Wear 224:38-49

    Article  CAS  Google Scholar 

  14. Glaeser WA, Shaffer SJ (1996) ASM Handbook: Fatigue and Fracture, vol 19. ASM International, Materials Park, OH, pp 331-336

    Google Scholar 

  15. [15] J. Ahlstrom and B. Karlsson: Wear, 2005, vol. 258, pp. 1187-93.

    Article  Google Scholar 

  16. [16] P. P. Sarkar, P. S. De, S. K. Dhua and P. C. Chakraborti: Mater. Sci. Eng. A,2017, vol. 707, pp. 125-35.

    Article  CAS  Google Scholar 

  17. [17] G. Kang, Q. Gao and X. Yang: Int. J. Mech. Sci., 2002, vol. 44, pp. 1647-63.

    Article  Google Scholar 

  18. [18] A. Athukorala, D. V. De Pellegrin and K. I. Kourousis: Wear, 2016, vol. 366-367, pp. 416-24.

    Article  Google Scholar 

  19. [19] H. Sunwoo, M. E. Fine, M. Meshil and D.H. Stone: Metall. Trans. A, 1982, vol. 13A, pp. 2035-47.

    Article  Google Scholar 

  20. [20] C. L. Pun, Q. Kan, P. J. Mutton, G. Kang and W. Yan: Int. J. Fatigue, 2014, vol. 66, pp. 138-54.

    Article  CAS  Google Scholar 

  21. [21] G. Kang and Q. Gao: Mech. Mater., 2002, vol. 34, pp. 809-20.

    Article  Google Scholar 

  22. Kang G, Gao Q, Cai L, Sun Y, Yang X (2002) Mater Sci Technol 18:13-16

    Article  CAS  Google Scholar 

  23. Dhar S, Danielsen HK, Fæster S, Rasmussen C, Zhang Y, Juul Jensen D (2019) Wear 438–439:203049

    Article  Google Scholar 

  24. ASTM E606/E606M-19e1, Standard Test Method for Strain-Controlled Fatigue Testing, ASTM International, West Conshohocken, PA, 2019. www.astm.org.

  25. X. Zhang, A. Godfrey, X. Huang, N. Hansen, W. Liu, and Q. Liu: Proc. 30th Risø Int. Symp. Mater. Sci. Nanostruct. Met.: Fundam. Appl., 2009, pp. 409–16.

  26. [26] X. Zhang, N. Hansen, A. Godfrey and X. Huang: Acta Mater., 2013, vol. 114, pp. 176-83.

    Article  Google Scholar 

  27. [28] N. Shamsei, A. Fatemi and F. D. Socie: Int. J. Plast., 2010, vol. 26(12), pp. 1680-1701.

    Article  Google Scholar 

  28. J. Morrow: Cyclic Plastic Strain Energy and Fatigue of Metals, Internal Friction, Damping and Cyclic Plasticity, ASTM International STP378-EB, West Conshohocken, PA, 1965, pp. 45–87.

  29. H. Christ: ASM Handbook: Fatigue and Fracture, 1996, vol. 19, pp. 73–95. https://doi.org/10.31399/asm.hb.v19.a0002354.

  30. [31] R. Branco, P.A. Prates, J. D. Costa, L.P. Borrego, F. Berto, A. Kotousov and F.V. Antunes; Int. J. Fatigue, 2019, vol. 124, pp. 89-98.

    Article  Google Scholar 

  31. [32] R. Branco, J. D. Costa, F. Berto, and F.V. Antunes; Theor. Appl. Fract. Mec., 2018, vol. 97, pp 340-348.

    Article  Google Scholar 

  32. [33] X. Zhang, A. Godfrey, X. Huang, N. Hansen and Q. Liu: Acta Mater., 2011, vol. 59, pp. 3422-30.

    Article  CAS  Google Scholar 

  33. [34] X. Zhang, A. Godfrey, N. Hansen and X. Huang: Acta Mater., 2016, vol. 61, pp. 4898-4909.

    Article  Google Scholar 

  34. [35] M. Dollar, I. M. Bernstein and A. W. Thompson, Acta Metall., 1988, vol. 36, pp. 311-20.

    Article  CAS  Google Scholar 

  35. [36] S. A. Hackney and G. J. Shiflet: Scr. Mater., 1986, vol. 20, pp. 389-394.

    Article  CAS  Google Scholar 

  36. [37] X. Zhang, N. Hansen, A. Godfrey and X. Huang: Mater. Sci. Technol., 2018, vol. 34, pp. 794–808.

    Article  CAS  Google Scholar 

  37. Barlat F, Ferreira Duarte JM, Gracio JJ, Lopes AB, Rauch EF (2003) Int J Plast 19:1215-44

    Article  CAS  Google Scholar 

  38. Vergnol JFM, Grilhe JR (1984) J Phys 45:1479-90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the Innovation Fund Denmark through the Project “INTELLISWITCH – Intelligent Quality Assessment of Railway Switches and Crossings” (Grant No. 4109-00003B). Dorte Juul Jensen and Xiaodan Zhang further wish to acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (Grant Agreement No. 788567-M4D). Johan Ahlström acknowledges partial funding from the European Horizon 2020 Joint Technology Initiative Shift2Rail through Contract No. 730841, from 2019 by In2Track2 under Grant Agreement No. 826255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 2, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhar, S., Ahlström, J., Zhang, X. et al. Multi-axial Fatigue of Head-Hardened Pearlitic and Austenitic Manganese Railway Steels: A Comparative Study. Metall Mater Trans A 51, 5639–5652 (2020). https://doi.org/10.1007/s11661-020-05941-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05941-8

Navigation