Skip to main content
Log in

The Role of Microstructure in Hydrogen-Induced Fatigue Failure of 304 Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of 104 mass ppm of hydrogen on the evolved microstructures associated with accelerated fatigue failure in type 304 austenitic stainless steel is reported. The fracture surface morphology changed from ductile striations to mixed mode that appeared “quasi-cleavage-like” and “flat.” Detailed microstructural characterization determined that these fractures were along the austenite–martensite interfaces. The morphology and orientation of the strain-induced martensite were impacted by the presence of hydrogen. Hydrogen constrained the formation of α′-martensite into linear, planar bands in the grains nearest the fracture surface, and ε-martensite was formed between the α′-martensite bands. The dislocation structure generated by the cyclic loading and the restriction of the martensitic transformation to specific forms by hydrogen is explained through the hydrogen-enhanced localized plasticity mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. SanMarchi, T. Michler, K. A. Nibur and B. P. Somerday, Int. J. Hydrogen Energy 2010, vol. 35, pp. 9736-9745.

    CAS  Google Scholar 

  2. 2. Y. Aoki, K. Kawamoto, Y. Oda, H. Noguchi and K. Higashida, Inter. J. Fract. 2005, vol. 133, pp. 277-288.

    CAS  Google Scholar 

  3. 3. D. Sun, G. Han, S. Vaodee, S. Fukuyama and K. Yokogawa, Mater. Sci. and Tech. 2001, vol. 17, pp. 302-8.

    CAS  Google Scholar 

  4. 4. K. J. L. Iyer, Canadian Metallurgical Quarterly 1989, vol. 28, pp. 153-158.

    CAS  Google Scholar 

  5. J. H. Holbrook and A. J. West, In Hydrogen effects in metals, ed. I. M. Bernstein and Thompson A. W. (TMS-AIME, New York NY: 1981), pp 655–63.

  6. 6. G. R. Caskey, Scripta Metall. 1981, vol. 15, pp. 1183 - 1186.

    CAS  Google Scholar 

  7. H. Hakarainen, T. Hanninen, Corrosion 1980, vol. 36, pp. 47-51.

    Google Scholar 

  8. 8. J. M. Rigsbee and R. B. Benson, J. Mater. Sci. 1977, vol. 12, pp. 406-409.

    CAS  Google Scholar 

  9. C. San Marchi, In Technical Reference on Hydrogen Compatibility of Materials, ed. C. San Marchi and Somerday B.P. (Sandia National Laboratory: 2005).

  10. 10. Y. Mine, A. Orita, K. Murakami and J.-M. Olive, Mater. Sci. and Engin. A 2012, vol. 548, pp. 118-125.

    CAS  Google Scholar 

  11. 11. H. Matsunaga and H. Noda, Metall. and Mater. Trans A 2011, vol. 42, pp. 2696-2705.

    Google Scholar 

  12. 12. Y. Murakami, T. Kanezaki and Y. Mine, Metall. and Mater. Trans A 2010, vol. 41, pp. 2548-2562.

    CAS  Google Scholar 

  13. D.M. Matson, A. Saigal and C.S. Marchi, In International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions, ed. B. P. Somerday and Sofronis P. (ASME Press: 2014), p 0.

  14. 14. Z.D. Harris, S.K. Lawrence, D.L. Medlin, G. Guetard, J.T. Burns and B.P. Somerday, Acta Mater. 2018, vol. 158, pp. 180-192.

    CAS  Google Scholar 

  15. 15. K.E. Nygren, S. Wang, K.M. Bertsch, H. Bei, A. Nagao and I.M. Robertson, Acta Mater. 2018, vol. 157, pp. 218-227.

    CAS  Google Scholar 

  16. S. Wang, M.L. Martin, I.M. Robertson and P. Sofronis, Acta Mater. 2016, vol. 107, pp. 279-288.

    CAS  Google Scholar 

  17. 17. M. L. Martin, B. P. Somerday, R. O. Ritchie, P. Sofronis and I. M. Robertson, Acta Mater. 2012, vol. 60, pp. 2739-2745.

    CAS  Google Scholar 

  18. 18. S. Wang, A. Nagao, P. Sofronis and I.M. Robertson, Acta Mater. 2018, vol. 144, pp. 164-176.

    CAS  Google Scholar 

  19. 19. K. E. Nygren, K. M. Bertsch, S. Wang, H. Bei, A. Nagao and I. M. Robertson, Current Opin. Solid State and Mater. Sci. 2018, vol. 22, pp. 1-7.

    CAS  Google Scholar 

  20. 20. S. Wang, A. Nagao, K. Edalati, Z. Horita and I.M. Robertson, Acta Mater. 2017, vol. 135, pp. 96-102.

    CAS  Google Scholar 

  21. 21. K. M. Bertsch, S. Wang, A. Nagao and I. M. Robertson, Mater. Sci. and Engin. A 2019, vol. 760, pp. 58-67.

    CAS  Google Scholar 

  22. S. Wang, K.E. Nygren, A. Nagao, P. Sofronis and I.M. Robertson, Scripta Mater. 2019, vol. 166, pp. 102-106.

    CAS  Google Scholar 

  23. 23. G. Bilotta, G. Henaff, D. Halm and M. Arzaghi, Int. J. Hydrogen Energy 2017, vol. 42, pp. 10568-10578.

    CAS  Google Scholar 

  24. 24. T. Shinko, G. Hénaff, D. Halm and G. Benoit, MATEC Web Conf. 2018, vol. 165, p. 03006.

    Google Scholar 

  25. 25. D.L. Holt, J. Appl. Phys. 1970, vol. 41, pp. 3197-3201.

    Google Scholar 

  26. 26. S. Wang, A. Nagao, P. Sofronis and I.M. Robertson, Acta Mater. 2019, vol. 174, pp. 181-188.

    CAS  Google Scholar 

  27. 27. Z.S. Hosseini, M. Dadfarnia, B.P. Somerday, P. Sofronis and R.O. Ritchie, J. Mech. and Phys. of Sols 2018, vol. 121, pp. 341-362.

    Google Scholar 

  28. 28. R. A. Oriani, Corrosion 1987, vol. 43, pp. 390-7.

    CAS  Google Scholar 

  29. 29. T. Kanezaki, C. Narazaki, Y. Mine, S. Matsuoka and Y. Murakami, Int. J. Hydrogen Energy 2008, vol. 33, pp. 2604-2619.

    CAS  Google Scholar 

  30. 30. T. Omura and J. Nakamura, ISIJ International 2012, vol. 52, pp. 234-239.

    CAS  Google Scholar 

  31. 31. S. Matsuoka, J. Yamabe and H. Matsunaga, Engin. Frac. Mech. 2016, vol. 153, pp. 103-127.

    Google Scholar 

  32. 32. M. L. Martin, P. Sofronis, I. M. Robertson, T. Awane and Y. Murakami, Int. J. Fatigue 2013, vol. 57, pp. 28-36.

    CAS  Google Scholar 

  33. 33. Arnaud Macadre, Toshihiro Tsuchiyama and Setsuo Takaki, J. Mater. Sci. 2017, vol. 52, pp. 3419-3428.

    CAS  Google Scholar 

  34. 34. M. L. Holzworth, Corrosion 1969, vol. 25, pp. 107-115.

    CAS  Google Scholar 

  35. 35. T.P. Perng and C.J. Altstetter, Metallurgical Transactions A 1987, vol. 18, pp. 123-134.

    Google Scholar 

  36. A. Macadre, S. Matsuoka, Y. Murakami, F. Barbier and J. Ferreira Furtado Filho, In 65th ABM International Congress, 18th IFHTSE Congress and 1st TMS/ABM International Materials Congress 2010, July 26, 2010 - July 30, 2010, (Associacao Brasileira de Metalurgia Materiais e Mineracao: Rio de Janeiro, Brazil, 2010), pp 2980-91.

  37. C. San Marchi, B. P. Somerday and S. L. Robinson, Int. J. Hydrogen Energy 2007, vol. 32, pp. 100–16.

  38. 38. M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang and P. Sofronis, Acta Mater. 2019, vol. 165, pp. 734-750.

    CAS  Google Scholar 

  39. K.E. Nygren, In Mater. Sci. and Engin., (University of Illinois at Urbana-Champaign: 2016).

  40. 40. J. A. Fenske, I. M. Robertson, R. Ayer, M. Hukle, D. Lillig and B. Newbury, Metall. Trans. A 2012, vol. 43A, pp. 3011-3022.

    Google Scholar 

  41. 41. M. L. Martin, J. A. Fenske, G. S. Liu, P. Sofronis and I. M. Robertson, Acta Mater. 2011, vol. 59, pp. 1601-1606.

    CAS  Google Scholar 

  42. 42. J. Kacher, G. S. Liu and I. M. Robertson, Micron 2012, vol. 43, pp. 1099-107.

    CAS  Google Scholar 

  43. 43. A.W. Thompson, Z.D. Harris and J.T. Burns, Micron 2019, vol. 118, pp. 43-49.

    CAS  Google Scholar 

  44. 44. P. J. Phillips, M. C. Brandes, M. J. Mills and M. De Graef, Ultramicroscopy 2011, vol. 111, pp. 1483-1487.

    CAS  Google Scholar 

  45. 45. A D Darbal, M Gemmi, J Portillo, E Rauch and S Nicolopoulos, Microscopy Today 2012, vol. 20, pp. 38-42.

    CAS  Google Scholar 

  46. D. Mainprice, F. Bachmann, R. Hielscher and H. Schaeben, Geological Society, London 2014.

  47. 47. X.-K. Zhu, Fatigue & Fracture of Engineering Materials and Structures 2016, vol. 39, pp. 120-131.

    Google Scholar 

  48. 48. I. Ghamarian, Y. Liu, P. Samimi and P.C. Collins, Acta Mater. 2014, vol. 79, pp. 203-215.

    CAS  Google Scholar 

  49. 49. E. Sirois and H. K. Birnbaum, Acta Metall. Mater. 1992, vol. 40, pp. 1377-1385.

    CAS  Google Scholar 

  50. 50. D.P. Abraham and C.J. Altstetter, Metall. Mater. Trans A 1995, vol. 26, pp. 2849-2858.

    Google Scholar 

  51. 51. S. Wang, N. Hashimoto, Y. Wang and S. Ohnuki, Acta Mater. 2013, vol. 61, pp. 4734-4742.

    CAS  Google Scholar 

  52. 52. T. C. Lee, D. K. Dewald, J. A. Eades, I. M. Robertson and H. K. Birnbaum, Review of Scientific Instruments 1991, vol. 62, pp. 1438-44.

    CAS  Google Scholar 

  53. 53. I. M. Robertson, Engin. Frac. Mech. 2001, vol. 68, pp. 671-692.

    Google Scholar 

  54. 54. P. Sofronis and H. K. Birnbaum, J. Mech. and Phys. of Sols 1995, vol. 43, pp. 49-90.

    Google Scholar 

  55. 55. H. K. Birnbaum and P. Sofronis, Mater. Sci. and Engin. A 1994, vol. 176, pp. 191-202.

    CAS  Google Scholar 

  56. 56. R. Kirchheim, Acta Mater. 2007, vol. 55, pp. 5139-5148.

    CAS  Google Scholar 

  57. 57. R. Kirchheim, Scripta Mater. 2010, vol. 62, pp. 67-70.

    CAS  Google Scholar 

  58. 58. P. J. Ferreira, I. M. Robertson and H. K. Birnbaum, Acta Mater. 1999, vol. 47, pp. 2991-2998.

    CAS  Google Scholar 

  59. 59. L. E. Murr, K. P. Staudhammer and S. S. Hecker, Metallurgical Transactions A 1982, vol. 13, pp. 627-635.

    CAS  Google Scholar 

  60. 60. J. Talonen, H. Hänninen, P. Nenonen and G. Pape, Metall. and Mater. Trans A 2005, vol. 36, pp. 421-432.

    CAS  Google Scholar 

  61. 61. S. Kajiwara, Phil. Mag. A 1981, vol. 43, pp. 1483-1503.

    CAS  Google Scholar 

  62. 62. J. W. Brooks, M. H. Loretto and R. E. Smallman, Acta Metall. 1979, vol. 27, pp. 1829-1838.

    CAS  Google Scholar 

  63. 63. J. W. Brooks, M. H. Loretto and R. E. Smallman, Acta Metall. 1979, vol. 27, pp. 1839-1847.

    CAS  Google Scholar 

  64. 64. Y. Tian, A. Borgenstam and P. Hedström, J. Alloys Comp. 2018, vol. 766, pp. 131-139.

    CAS  Google Scholar 

  65. K. Nygren, A. Nagao, P. Sofronis and I. M. Robertson, In International Hydrogen Conference (IHC 2016): Materials Performance in Hydrogen Environments, ed. B. P. Somerday and Sofronis P. (ASME: New York, NY, 2017).

  66. 66. H. K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A 1994, vol. A176, pp. 191-202.

    Google Scholar 

  67. 67. A. Nagao, C. D. Smith, M. Dadfarnia, P. Sofronis and I. M. Robertson, Acta Mater. 2012, vol. 60, pp. 5182-5189.

    CAS  Google Scholar 

  68. 68. M. L. Martin, I. M. Robertson and P. Sofronis, Acta Mater. 2011, vol. 59, pp. 3680-3687.

    CAS  Google Scholar 

Download references

Acknowledgments

KEN acknowledges partial and IMR full support from National Science Foundation, through Award No. CMMI-1406462. PS and KEN acknowledge partial financial support from the International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), sponsored by the World Premier International Research Center Initiative (WPI), MEXT, Japan. KEN, AN, and PS acknowledge the support of JFE Steel Corporation. The electron microscopy was carried out in part in the Frederick Seitz Materials Research Laboratory at the University of Illinois and in part in the Center for Microanalysis of Materials at the University of Wisconsin-Madison, which is partially by NSF Materials Research Science and Engineering Center through award DMR-1121288.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Robertson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nygren, K.E., Nagao, A., Sofronis, P. et al. The Role of Microstructure in Hydrogen-Induced Fatigue Failure of 304 Austenitic Stainless Steel. Metall Mater Trans A 51, 5704–5714 (2020). https://doi.org/10.1007/s11661-020-05977-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05977-w

Navigation