Skip to main content
Log in

Key Experiments and Thermodynamic Description of the Co-Nb-Ni System

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Equilibrated alloys were characterized using SEM/EDX and XRD methods to identify the Co-Nb-Ni phase equilibria at 1100 °C and 900 °C. The isothermal section at 1100 °C was re-constructed and the partial phase relationships at 900 °C were further validated. The crystal structure of the ternary compound τ was proved to be of the Mg3Cd type with Pearson symbol hP8 and space group P63/mmc. The addition of nickel can increase the phase stability of Co7Nb2. The Co-Nb, Ni-Nb, and Co-Nb-Ni systems were assessed using the CALPHAD (CALculation of PHAse Diagram) method. The present experimental and calculated results can be used as a reference for developing and designing Co/Ni-based intermetallics and superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright (2018), with permission from Elsevier.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. [1]R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Google Scholar 

  2. [2]A.M.S. Costa, J.P. Oliveira, M.V. Salgado, C.A. Nunes, E.S.N. Lopes, N.V.V. Mogili, A.J. Ramirez, and A.P. Tschiptschin: Mater. Sci. Eng. A, 2018, vol. 730, pp. 66-72.

    CAS  Google Scholar 

  3. [3]X. Liu, Y. Pan, Y. Chen, J. Han, S. Yang, J. Ruan, C. Wang, Y. Yang, and Y. Li: Metals, 2018, vol. 8, pp. 563.

    Google Scholar 

  4. [4]K.A. Christofidou, M.C. Hardy, H.Y. Li, C. Argyrakis, H. Kitaguchi, N.G. Jones, P.M. Mignanelli, A.S. Wilson, O.M.D.M. Messé, E.J. Pickering, R.J. Gilbert, C.M.F. Rae, S. Yu, A. Evans, D. Child, P. Bowen, and H.J. Stone: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3896-907.

    Google Scholar 

  5. [5]S. Antonov, M. Detrois, and S. Tin: Metall. Mater. Trans. A, 2018, vol. 49, pp. 305-20.

    Google Scholar 

  6. [6]M. Detrois, S. Antonov, and S. Tin: Intermetallics, 2019, vol. 104, pp. 103-12.

    CAS  Google Scholar 

  7. [7]R.K. Shaipov, E.Yu. Kerimov, and E.M. Slyusarenko: J. Alloys Compd., 2018, vol. 742, pp. 466-79.

    CAS  Google Scholar 

  8. [8]L. Zhu, C. Wei, L. Jiang, Z. Jin, and J.C. Zhao: Intermetallics, 2018, vol. 93, pp. 20-9.

    CAS  Google Scholar 

  9. [9]A. Leineweber, G. Kreiner, D. Grüner, R. Dinnebier, and F. Stein: Intermetallics, 2012, vol. 25, pp. 34-41.

    CAS  Google Scholar 

  10. [10]W. Köster and W. Mulfinger: Z. Metallkd., 1938, vol. 30, pp. 348-50.

    Google Scholar 

  11. [11]S. Saito and P.A. Beck: Trans. AIME, 1960, vol. 218, pp. 670-4.

    CAS  Google Scholar 

  12. [12]R.E. Seebold and L.S. Birks: J. Nucl. Mater., 1961, vol. 3, pp. 260-6.

    CAS  Google Scholar 

  13. [13]A. Raman: Trans. AIME, 1966, vol. 236, pp. 561-5.

    CAS  Google Scholar 

  14. [14]J.K. Pargeter and W. Hume-Rothery: J. Less-Common Met., 1967, vol. 12, pp. 366-74.

    CAS  Google Scholar 

  15. S.K. Bataleva, V.V. Kuprina, V.Y. Markiv, V.V. Burnashova, G.N. Ronami, and S.M. Kuznetsova: Vestn. Mosk. Univ. Ser. Khim. 1970, vol. 11, pp. 432-37.

    CAS  Google Scholar 

  16. [16]N.F. Shen, I.P. Jones, and J.N. Pratt: Mater. Chem. Phys., 1986, vol. 15, pp. 15-25.

    CAS  Google Scholar 

  17. [17]T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak: Binary Alloy Phase Diagrams (2nd Edition), ASM International, Ohio, 1990.

    Google Scholar 

  18. [18]W. Sprengel, M. Denkinger, and H. Mehrer: Intermetallics, 1994, vol. 2, pp. 127-35.

    CAS  Google Scholar 

  19. [19]F. Stein, D. Jiang, M. Palm, G. Sauthoff, D. Grüner, and G. Kreiner: Intermetallics, 2008, vol. 16, pp. 785-92.

    CAS  Google Scholar 

  20. [20]V.N. Drobyshev and T.N. Rezukhina: Zh. Fiz. Khim., 1965, vol. 39, pp. 151-5.

    CAS  Google Scholar 

  21. [21]S.V. Meschel and O.J. Kleppa: J. Alloys Compd., 2006, vol. 415, pp. 143-9.

    CAS  Google Scholar 

  22. The Materials Project, https://materialsproject.org. Accessed 1 Mar 2019.

  23. [23]A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson: APL Mater., 2013, vol. 1, pp. 011002.

    Google Scholar 

  24. OQMD: The Open Quantum Materials Database, http://oqmd.org. Accessed 1 Mar 2019.

  25. [25]J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton: JOM, 2013, vol. 65, pp. 1501-9.

    CAS  Google Scholar 

  26. [26]S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, and C. Wolverton: NPJ Comput. Mater., 2015, vol. 1, pp. 15010.

    CAS  Google Scholar 

  27. [27]L. Kaufman and H. Nesor: Calphad, 1978, vol. 2, pp. 81-108.

    CAS  Google Scholar 

  28. R. Bormann and R. Busch: J. Non-Cryst. Solids, 1990, vol. 117-118, pp. 539-42.

    CAS  Google Scholar 

  29. [29]K.C.H. Kumar, I. Ansara, P. Wollants, and L. Delaey: J. Alloys Compd., 1998, vol. 267, pp. 105-12.

    CAS  Google Scholar 

  30. [30]C. He, F. Stein, and M. Palm: J. Alloys Compd., 2015, vol. 637, pp. 361-75.

    CAS  Google Scholar 

  31. [31]A.F. Guillermet: Z. Metallkd., 1987, vol. 78, pp. 639-47.

    Google Scholar 

  32. [32]G. Grube, O. Kubaschewski, and K. Zwiauer: Z. Elektrochem., 1939, vol. 45, pp. 881-4.

    CAS  Google Scholar 

  33. [33]S.A. Pogodin and A.N. Selikmann: Dokl. Akad. Nauk SSSR, 1941, vol. 31, pp. 895-7.

    CAS  Google Scholar 

  34. [34]I. J. Duerden and W. Hume-Rothery: J. Less-Common Met., 1966, vol. 11, pp. 381-7.

    CAS  Google Scholar 

  35. [35]L.N. Guseva, R.S. Mints, and Y.A. Malkov: Russ. Metall., 1969, vol. 5, pp. 120-2.

    Google Scholar 

  36. A. Wicker, C. Allibert, J. Oriole, E. Bonnier (1970) C R Hebd Séances Acad Sci Ser C 271:273-75.

    CAS  Google Scholar 

  37. [37]C.J. van der Wekken, R. Taggart, and D.H. Polonis: Met. Sci., 1971, vol. 5, pp. 219-23.

    Google Scholar 

  38. [38]Y. Muramatsu, F. Roux, and A. Vignes: Trans. JIM, 1975, vol. 16, pp. 61-71.

    CAS  Google Scholar 

  39. [39]P. Nash and A. Nash: Bull. Alloy Phase Diag., 1986, vol. 7, pp. 124-30.

    CAS  Google Scholar 

  40. [40]J.M. Joubert and Y. Feutelais: Calphad, 2002, vol. 26, pp. 427-38.

    CAS  Google Scholar 

  41. [41]H. Chen, Y. Du, H. Xu, Y. Liu, and J.C. Schuster: J. Mater. Sci., 2005, vol. 40, pp. 6019-22.

    CAS  Google Scholar 

  42. [42]K. Kajikawa, K. Oikawa, F. Takahashi, H. Yamada, and K. Anzai: Mater. Trans., 2010, vol. 51, pp. 781-6.

    CAS  Google Scholar 

  43. [43]L.S. Chistyakov, K.V. Grigorovich, and A.Y. Stomakhin: Izv. Vyssh. Uch. Zav. Chernaya Metall., 1993, vol. 1, pp. 83-4.

    Google Scholar 

  44. [44]K. Schaefers, J. Qin, M. Rösner-Kuhn, and M.G. Frohberg: Can. Metall., 1996, vol. 35, pp. 47-51.

    Google Scholar 

  45. [45]V.S. Sudavtsova: Russ. Metall., 1998, vol. 1, pp. 54-6.

    Google Scholar 

  46. B.B. Argent and B.J. Piearcey: The Physical Chemistry of Metallic Solutions and Intermetallic Compounds(National Physical Laboratory Symposium No. 9), 1959, vol. 1, pp. 398-402.

  47. [47]E.M. Sokolovskaya, L.L. Meshkov, and G.A. Tikhankin: Dokl. Akad. Nauk SSSR, 1976, vol. 229, pp. 914-6.

    CAS  Google Scholar 

  48. [48]V.I. Alekseev, G.B. Petrov, and G.V. Shcherbedinskiy: Russ. Metall., 1978, vol. 5, pp. 47-50.

    Google Scholar 

  49. [49]N.P. Lyakishev, Y.P. Snitko, V.I. Alekseev, and G.A. Levshin: Zh. Fiz. Khim., 1983, vol. 57, pp. 180-2.

    CAS  Google Scholar 

  50. [50]P. Ravindran, G. Subramoniam, and R. Asokamani: Phys. Rev. B, 1996, vol. 53, pp. 1129-37.

    CAS  Google Scholar 

  51. [51]M. Mathon, D. Connétable, B. Sundman, and J. Lacaze: Calphad, 2009, vol. 33, pp. 136-61.

    CAS  Google Scholar 

  52. [52]D. Connétable, M. Mathon, and J. Lacaze: Calphad, 2011, vol. 35, pp. 588-93.

    Google Scholar 

  53. [53]Y. Cao, J. Zhu, Z. Nong, X. Yang, Y. Liu, and Z. Lai: Comput. Mater. Sci., 2013, vol. 77, pp. 208-13.

    CAS  Google Scholar 

  54. [54]D. Connétable, F. Galliano, G. Odemer, C. Blanc, and É. Andrieu: J. Alloys Compd., 2014, vol. 610, pp. 347-51.

    Google Scholar 

  55. Y.C. Lin, S.C. Luo, M.S. Chen, D.G. He, C.Y. Zhao: J. Alloys Compd. 2016, vol. 688, pp. 285-93.

    CAS  Google Scholar 

  56. [56]Y.C. Lin, X.Y. Jiang, S.C. Luo, and D.G. He: Mater. Des., 2018, vol. 139, pp. 16-24.

    CAS  Google Scholar 

  57. [57]K. Zeng and Z. Jin: Scr. Metall., 1992, vol. 26, pp. 417-22.

    CAS  Google Scholar 

  58. [58]K. Zeng, X. Zeng, and Z. Jin, J. Alloys Compd., 1992, vol. 179, pp. 177-85.

    CAS  Google Scholar 

  59. [59]A. Bolcavage and U.R. Kattner: J. Phase Equilib., 1996, vol. 17, pp. 92-100.

    CAS  Google Scholar 

  60. [60]J.M. Joubert, B. Sundman, and N. Dupin: Calphad, 2004, vol. 28, pp. 299-306.

    CAS  Google Scholar 

  61. [61]H. Chen and Y. Du: Calphad, 2006, vol. 30, pp. 308-15.

    CAS  Google Scholar 

  62. L.A. Panteleimonov, O.G. Burtseva, and V.V. Zubenko: Vestn. Mosk. Univ. Ser. Khim. 1982, vol. 37, pp. 71-2.

    Google Scholar 

  63. [63]K.P. Gupta: J. Phase Equilib., 1997, vol. 18, pp. 419-25.

    CAS  Google Scholar 

  64. [64]Y.M. Wang, H.S. Liu, F. Zheng, and Z.P. Jin: J. Alloys Compd., 2008, vol. 454, pp. 501-5.

    CAS  Google Scholar 

  65. [65]Y. Feng, R. Wang, K. Yu, and D. Wen: Rare Metals, 2008, vol. 27, pp. 83-8.

    CAS  Google Scholar 

  66. [66]S. Ida, R. Yamagata, H. Nakashima, S. Kobayashi, and M. Takeyama: J. Phase Equilib. Diffus., 2019, vol. 40, pp. 570-82.

    CAS  Google Scholar 

  67. [67]A. Taylor and R.W. Floyd: Acta Cryst., 1950, vol. 3, pp. 285-9.

    CAS  Google Scholar 

  68. [68]M. Yousuf, P.C. Sahu, H.K. Jajoo, S. Rajagopalan, and K.G. Rajan: J. Phys. F, 1986, vol. 16, pp. 373-80.

    CAS  Google Scholar 

  69. [69]L.J.E. Hofer and W.C. Peebles: JACS, 1947, vol. 69, pp. 893-9.

    CAS  Google Scholar 

  70. [70]J.W. Edwards, R. Speiser, and H.L. Johnston: J. Appl. Phys., 1951, vol. 22, pp. 424-8.

    CAS  Google Scholar 

  71. C.R. Hunt and A. Raman: Z. Metallkd., 1968, vol. 59, pp. 701-7.

    CAS  Google Scholar 

  72. [72]A. Kaufman, N.J. Hoffman, and H. Lipson: Scr. Metall., 1969, vol. 3, pp. 715-20.

    CAS  Google Scholar 

  73. Jade 5.0, XRD Pattern Processing Materials Data Inc., 1999.

  74. [74]J. Rodríguez-Carvajal: Phys. B, 1993, vol. 192, pp. 55-69.

    Google Scholar 

  75. [75]G. Kresse and J. Furthmüller: Phys. Rev. B, 1996, vol. 54, pp. 11169-86.

    CAS  Google Scholar 

  76. [76]G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758-75.

    CAS  Google Scholar 

  77. [77]J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865-8.

    CAS  Google Scholar 

  78. [78]H.J. Monkhorst and J.D. Pack: Phys. Rev. B, 1976, vol. 13, pp. 5188-92.

    Google Scholar 

  79. [79]F. Birch: J. Geophys. Res., 1978, vol. 83, pp. 1257-68.

    CAS  Google Scholar 

  80. SGTE Pure Elements (Unary) Database Version 5.1, https://www.thermocalc.com/academia/researchers. Accessed 10 Nov 2018.

  81. [81]M. Hillert and M. Jarl: Calphad, 1978, vol. 2, pp. 227-38.

    CAS  Google Scholar 

  82. [82]O. Redlich and A.T. Kister: Ind. Eng. Chem. 1948, vol. 40, pp. 345-8.

    Google Scholar 

  83. [83]J.M. Joubert and N. Dupin: Intermetallics, 2004, vol. 12, pp. 1373-80.

    CAS  Google Scholar 

  84. [84]B. Sundman, B. Jansson, and J.O. Andersson: Calphad, 1985, vol. 9, pp. 153-90.

    CAS  Google Scholar 

  85. [85]J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273-312.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant No. 2017YFB0702901) and National Natural Science Foundation of China (NSFC) (Grant No. 51771021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuiping Guo or Zhenmin Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on February 3, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Guo, C., Li, J. et al. Key Experiments and Thermodynamic Description of the Co-Nb-Ni System. Metall Mater Trans A 51, 5892–5911 (2020). https://doi.org/10.1007/s11661-020-05963-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05963-2

Navigation