Skip to main content
Log in

A Review on Additive Manufactured Sensors

  • Review Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) printing is an outstanding technology and performs a significant role in the fabrication of sensors as compared to conventional methods of fabrication, such as subtractive manufacturing. In this review paper, fabrication of general-purpose sensors using traditional manufacturing and 3D printing has been discussed. All possible sensors, including mechanical sensors, electronic sensors, biosensors, and chemical sensors can be fabricated using 3D printing technologies in a cost-effective, rapid and eco-friendly manner. Among various 3D printing technologies, fused deposition modelling and inkjet printing method have been prominently utilized. With the advent of new materials and flexibility in the printing process, these technologies show immense advantages and potential in the development of sensors. Future sensing applications include advanced biosensors for tissue engineering, high-performance sensing capabilities, such as high power sensors and improvement in multifunctional sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. O. Kanoun and H. Trankler, Sensor technology advances and future trends, IEEE Trans. Instrum. Meas., 53 (2004) 1497–1501.

    Google Scholar 

  2. Y. Ni, R. Ji, K. Long, T. Bu, K. Chen and S. Zhuang, A review of 3D-printed sensors, Appl. Spectrosc. Rev., 52 (2017) 623–652.

    ADS  Google Scholar 

  3. S. C. Mukhopadhyay, Wearable sensors for human activity monitoring: A review, IEEE Sens. J., 15 (2015) 1321–1330.

  4. T. L. Yeo, T. Sun, and K. T. V. Grattan, Fibre-optic sensor technologies for humidity and moisture measurement, Sens. Actuators A Phys., 144 (2008) 280–295.

    Google Scholar 

  5. W. Wang, X. Yin, J. Wu, Y. Yu, Y. Geng, X. Tan, Y. Du, X. Hong and X. Li, Quantum dots-based multiplexed fiber-optic temperature sensors, IEEE Sens. J., 16 (2016) 2437–2441.

  6. A. Heidari, G. Wang, M. Abdollahpour, and G. C. M. Meijer, Design of a temperature sensor with optimized noise-power performance, Sens. Actuators A Phys., 282 (2018) 79–89.

    Google Scholar 

  7. H. Hamouche, S. Makhlouf, A. Chaouchi, and M. Laghrouche, Humidity sensor based on keratin bio polymer film. Sens. Actuators A Phys., 282 (2018) 132–141.

    Google Scholar 

  8. N. Tsolakis, E. Aivazidou, and J. S. Srai, Sensor applications in agrifood systems: current trends and opportunities for water stewardship, Climate, 7 (2019) 44.

    Google Scholar 

  9. R. Thangarasu, and S. Anandamurugan, Challenges and applications of wireless sensor networks in smart farming—a survey. Proc. ICBDCC, 18 (2019) 353–361.

  10. S. Doshi and S. Dube, Wireless sensor network to monitor river water impurity. ICCNCT 2018 (2019) 809–817.

    Google Scholar 

  11. Y. Sharon, B. Khachatryan and D. Cheskis, Towards a low current Hall effect sensor. Sens. Actuators A Phys., 279 (2018) 278–283.

    Google Scholar 

  12. H. W. Tan, T. Tran and C. K. Chua, A review of printed passive electronic components through fully additive manufacturing methods, Virtual Phys. Prototyp., 11 (2016) 271–288.

    Google Scholar 

  13. W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, C. C. Wang, Y. C. Shin, S. Zhang and P. D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering, CAD Comput. Aided Des., 69 (2015) 65–89.

    Google Scholar 

  14. S. Ford and M. Despeisse, Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J. Clean. Prod., 137 (2016) 1573–1587.

    Google Scholar 

  15. K. V. Wong and A. Hernandez, A review of additive manufacturing. ISRN Mech. Eng., 2012 (2012) 1–10.

    Google Scholar 

  16. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen and D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng., 143 (2018) 172–196.

    Google Scholar 

  17. R. Darbar, P. K. Sen, P. Dash and D. Samanta, Using hall effect sensors for 3D space text entry on smartwatches. Procedia Comput. Sci., 84 (2016) 79–85.

    Google Scholar 

  18. D. Zymelka, T. Yamashita, S. Takamatsu, T. Itoh and T. Kobayashi, Thin-film flexible sensor for omnidirectional strain measurements. Sens. Actuators A Phys., 263 (2017) 391–397.

    Google Scholar 

  19. G. I. Hay, P. S. A. Evans, D. J. Harrison, D. Southee, G. Simpson and P. M. Harrey, Characterization of lithographically printed resistive strain gauges. IEEE Sens. J., 5 (2005) 864–870.

  20. J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi and G. Zhang, Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl. Phys. Lett., 101 (2012) 063112.

    ADS  Google Scholar 

  21. R. Täschner, E. Hiller, and M. Blech, Offset stable piezoresistive high-temperature pressure sensors based on silicon. J. Sensors Sens. Syst., 5 (2016) 197–203.

    ADS  Google Scholar 

  22. G. Hamdana, M. Bertke, L. Doering, T. Frank, U. Brand, H. S. Wasisto and E. Peiner, Transferable micromachined piezoresistive force sensor with integrated double-meander-spring system. J. Sens. Sens. Syst., 6 (2017) 121–133.

    ADS  Google Scholar 

  23. R. Kumar, S. Rab, B. D. Pant and S. Maji, Design, development and characterization of MEMS silicon diaphragm force sensor. Vacuum, 153 (2018) 211–216.

    ADS  Google Scholar 

  24. F. Schmaljohann, D. Hagedorn and F. Löffler, Thin film sensors for measuring small forces. J. Sens. Sens. Syst., 4 (2015) 91–95.

    ADS  Google Scholar 

  25. X. Yang, Y. Wang, H. Sun and X. Qing, A flexible ionic liquid-polyurethane sponge capacitive pressure sensor. Sens. Actuators A Phys., 285 (2019) 67–72.

    Google Scholar 

  26. M. K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R. I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja and F. Martina, Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann. Manuf. Technol., 65 (2016) 737–760.

    Google Scholar 

  27. A. W. Gebisa and H. G. Lemu, Design for manufacturing to design for additive manufacturing: analysis of implications for design optimality and product sustainability. Procedia Manuf., 13 (2017) 724–731.

    Google Scholar 

  28. Y. Xu, X. Wu, X. Guo, B. Kong, M. Zhang, X. Qian, S. Mi, W Sun. The boom in 3D-printed sensor technology. Sensors, 17 (2017) 1166.

  29. M. Liu, Y. Zhao, Y. Shao, Q. Zhang and C. Liu, 3D printed force sensor with inkjet printed piezoresistive based strain gauge. Proc. IEEE Sens., 2018 (2018) 1–4.

    Google Scholar 

  30. S. B. Kesner and R. D. Howe, Design principles for rapid prototyping forces sensors using 3-D printing. IEEE/ASME Trans. Mechatron., 16 (2011) 866–870.

    Google Scholar 

  31. F. Wasserfall, N. Hendrich, F. Fiedler, and J. Zhang, 3D-printed low-cost modular force sensors. 20th international conference on climbing and walking robots and the support technologies for mobile machines, Porto, Portugal (2017) 485–492.

  32. Z. Xu, S. Kolev and E. Todorov, Design, optimization, calibration, and a case study of a 3D-printed, low-cost fingertip sensor for robotic manipulation. Proc. - IEEE Int. Conf. Robot. Autom. (2017) 2749–2756.

  33. G. De Maria, C. Natale, and S. Pirozzi, Force/tactile sensor for robotic applications, Sens. Actuators, A Phys., 175 (2012) 60–72.

    Google Scholar 

  34. J. Yao, H. Zhang, X. Xiang, H. Bai, and Y. Zhao, A 3-D printed redundant six-component force sensor with eight parallel limbs. Sensors Actuators, A Phys., 247 (2016) 90–97.

    Google Scholar 

  35. K. Kim, J. Park, J. Hoon Suh, M. Kim, Y. Jeong, and I. Park, 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments, Sens. Actuators, A Phys., 263 (2017) 493–500.

    Google Scholar 

  36. A. Nag, S. Feng, S. C. Mukhopadhyay, J. Kosel, and D. Inglis, 3D printed mould-based graphite/PDMS sensor for low-force applications, Sens. Actuators, A Phys., 280 (2018) 525–534.

    Google Scholar 

  37. L. M. Faller and H. Zangl, Robust design of a 3D- and inkjet-printed capacitive force/pressure sensor. 2016 17th Int. Conf. Therm. Mech. Multi-Physics Simul. Exp. Microelectron. Microsystems, EuroSimE (2016) 1–7.

    Google Scholar 

  38. V. Correia, C. Caparros, C. Casellas, L. Francesch, J. G. Rocha, and S. Lanceros-Mendez, Development of inkjet printed strain sensors, Smart Mater. Struct., 22 (2013) 105028.

    ADS  Google Scholar 

  39. L. M. Faller, W. Granig, M. Krivec, A. Abram, and H. Zangl, Rapid prototyping of force/pressure sensors using 3D- and inkjet-printing. J. Micromech. Microeng., 28 (2018) 104002.

    ADS  Google Scholar 

  40. S. Agarwala, G. L. Goh, Y. L. Yap, G. D. Goh, H. Yu, W. Y. Yeong, and T. Tran, Development of bendable strain sensor with embedded microchannels using 3D printing. Sens. Actuators A Phys., 263 (2017) 593–599.

    Google Scholar 

  41. J. Christ, N. Aliheidari, A. Ameli, and P. Pötschke, 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic nanocomposites. Annu. Tech. Conf. - ANTEC, Conf. Proc., 2017 (2017) 1–6.

    Google Scholar 

  42. J. R. McGhee, M. Sinclair, D. J. Southee, and K. G. U. Wijayantha, Strain sensing characteristics of 3D-printed conductive plastics. Electron. Lett., 54 (2018) 570–572.

    ADS  Google Scholar 

  43. Y. R. Jeong, H. Park, S. W. Jin, S. Y. Hong, S. S. Lee, and J. S. Ha, Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater., 25 (2015) 4228–4236.

    Google Scholar 

  44. J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood and J. A. Lewis, Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater., 26 (2014) 6307–6312.

    Google Scholar 

  45. A. Frutiger, J. T. Muth, D. M. Vogt, Y. Mengüç, A. Campo, A. D. Valentine, C. J. Walsh and J. A. Lewis, Capacitive soft strain sensors via multicore-shell fiber printing. Adv. Mater., 27 (2015) 2440–2446.

    Google Scholar 

  46. S. Y. Wu, C. Yang, W. Hsu, and L. Lin, 3D-printed microelectronics for integrated circuitry and passive wireless sensors. Microsyst. Nanoeng., 1 (2015) 1–9.

    Google Scholar 

  47. S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, and D. A. Hutchins, A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS ONE, 7 (2012) 1–6.

    Google Scholar 

  48. M. Schouten, R. Sanders, and G. Krijnen, 3D printed flexible capacitive force sensor with a simple micro-controller based readout, Proc. IEEE Sens., 2017 (2017) 1–3.

    Google Scholar 

  49. G. Wolterink, R. Sanders, and G. Krijnen, Thin, flexible, capacitive force sensors based on anisotropy in 3D-printed structures. Proc. IEEE Sens., 2018 (2018) 1–4.

    Google Scholar 

  50. X. Aeby, R. van Dommelen, and D. Briand, Fully FDM 3D printed flexible capacitive and resistive transducers. 20th Int. Conf. Solid-State Sensors, Actuators Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII), Berlin, Germany, (2019) 2440–2443.

    Google Scholar 

  51. B. Eijking, R. Sanders, and G. Krijnen, Development of whisker inspired 3D multi-material printed flexible tactile sensors. Proc. IEEE Sens., 2017 (2017) 1–3.

    Google Scholar 

  52. R. Yang, T. Gao, D. Li, Y. Chen, G. Jin, H. Liang and F. Niu, Transparent and flexible force sensor based on microextrusion 3D printing. Micro Nano Lett., 13 (2018) 1460–1464.

    Google Scholar 

  53. H. B. Lee, Y. W. Kim, J. Yoon, N. K. Lee, and S. H. Park, 3D customized and flexible tactile sensor using a piezoelectric nanofiber mat and sandwich-molded elastomer sheets. Smart Mater. Struct., 26 (2017) 045032.

    ADS  Google Scholar 

  54. X. Yu, Y. Li, and H. Yu, Flexible capacitive pressure sensors fabricated by 3D printed mould. Electron. Lett., 55 (2019) 999–1000.

    ADS  Google Scholar 

  55. Y. Shao, Y. Zhao, M. Liu, Q. Zhang, and C. Liu, Flexible force sensor with micro-pyramid arrays based on 3D printing. Proc. IEEE Sens., 2018 (2018) 1–4.

    Google Scholar 

  56. M. Kisic, N. Blaz, L. Zivanov, and M. Damnjanovic, Capacitive force sensor fabricated in additive technology. 42nd international spring seminar on electronics technology (ISSE) Wroclaw, Poland (2019) 1–5.

  57. M. Mirzaee and S. Noghanian, 3D printed antenna using biocompatible dielectric material and graphene. IEEE Antennas Propag. Soc. Int. Symp. Proc., 2017 (2017) 2543–2544.

    Google Scholar 

  58. M. Liang, C. Shemelya, E. MacDonald, R. Wicker, and H. Xin, 3-D printed microwave patch antenna via fused deposition method and ultrasonic wire mesh embedding technique, IEEE Antennas Wirel. Propag. Lett., 14 (2015) 1346–1349.

    Google Scholar 

  59. G. McKerricher, D. Titterington, and A. Shamim, A fully inkjet-printed 3-D honeycomb-inspired patch antenna. IEEE Antennas Wirel. Propag. Lett., 15 (2016) 544–547.

    Google Scholar 

  60. B. K. Tehrani, B. S. Cook, and M. M. Tentzeris, Inkjet printing of multilayer millimeter-wave yagi-uda antennas on flexible substrates. IEEE Antennas Wirel. Propag. Lett., 15 (2016) 143–146.

    Google Scholar 

  61. J. Courbat, Y. B. Kim, D. Briand, and N. F. De Rooij, Inkjet printing on paper for the realization of humidity and temperature sensors. 16th Int. solid-state sensors, actuators microsystems conf. TRANSDUCERS’11 (2011) 1356–1359.

  62. M. Sajid, J. Z. Gul, S. W. Kim, H. B. Kim, K. H. Na, and K. H. Choi, Development of 3D-printed embedded temperature sensor for both terrestrial and aquatic environmental monitoring robots, 3D Print. Addit. Manuf., 5 (2018) 160–169.

    Google Scholar 

  63. H. Devaraj, K. C. Aw, J. Travas-Sejdic, and R. N. Sharma, Low velocity digital air flow sensor from 3D printed PEDOT:PSS micro-hair structures, 18th Int. Conf. solid-state sensors, actuators and microsystems (TRANSDUCERS), Anchorage, AK, USA (2015) 1097–1100.

    Google Scholar 

  64. S. J. Leigh, C. P. Purssell, D. R. Billson, and D. A. Hutchins, Using a magnetite/thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors. Smart Mater. Struct., 23 (2014) 095039.

    Google Scholar 

  65. V. Zega, C. Credi, M. Invernizzi, R. Bernasconi, G. Langfelder, A. Cigada, L. Magagnin, M. Levi and A. Corigliano, 3D-printing and wet metallization for uniaxial and multi-axial accelerometers. 19th Int. Conf. Therm. Mech. Multi-Physics Simul. Exp. Microelectron. Microsystems, EuroSimE, 2018 (2018) 1–4.

    Google Scholar 

  66. E. MacDonald, R. Salas, D. Espalin, M. Perez, E. Aguilera, D. Muse and R. B. Wicker, 3D printing for the rapid prototyping of structural electronics, IEEE Access, 2 (2014) 234–242.

    Google Scholar 

  67. M. Ilke, R. Bauer, and M. Lengden, Performance of a 3D printed photoacoustic sensor for gas detection in mid-infrared. IEEE Sensors, Glasgow, UK (2017) 1–3.

    Google Scholar 

  68. O. E. Bonilla-manrique, P. Martín-mateos, P. Acedo, and M. Ruiz-llata, Comparison of photoacoustic and wavelength modulation spectroscopy in a 3D-printed resonant gas cell. IEEE Sensors, Glasgow, UK (2017) 1–3.

    Google Scholar 

  69. A. Hossain, Lab-in-a-phone: smartphone-based portable fluorometer for pH field measurements of environmental Water. IEEE Sens. J., 15 (2015) 5095–5102.

    ADS  Google Scholar 

  70. S. Krachunov and A. J. Casson, 3D printed dry EEG electrodes. Sensors (Basel)., 16 (2016) 1635.

    ADS  Google Scholar 

  71. S. J. Cho, T. S. Nam, S. Y. Choi, M. K. Kim, and S. Kim, 3D printed multi-channel EEG sensors for zebrafish. IEEE Sens. Proc., (2015) 2–4.

  72. M. S. Mannoor, Z. Jiang, T. James, Y. L. Kong, K. A. Malatesta, W. O. Soboyejo, N. Verma, D. H. Gracias and M. C. McAlpine, 3D printed bionic ears. Nano Lett., 13 (2013) 2634–2639.

    ADS  Google Scholar 

  73. E. Suaste-gómez, G. Rodríguez-roldán, H. Reyes-cruz, and O. Terán-jiménez, Developing an ear prosthesis fabricated in polyvinylidene fluoride by a 3D printer with sensory intrinsic properties of pressure and temperature. Sensors (Basel), 16 (2016) 332.

    ADS  Google Scholar 

  74. P.C. Yeh, J. Chen, I. Karakurt, and L. Lin, 3D printed bio-sensing chip for the determination of bacteria antibiotic-resistant profile. 20th Int. Conf. Solid-State Sensors, Actuators Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII), Berlin, Germany, (2019) 126–129.

    Google Scholar 

  75. Y. K. Lin, T. S. Hsieh, L. Tsai, S. H. Wang, and C. C. Chiang, Using three-dimensional printing technology to produce a novel optical fiber Bragg grating pressure sensor. Sens. Mater., 28 (2016) 389–394.

    Google Scholar 

  76. W. Kam, W. S. Mohammed, S. O’Keeffe, and E. Lewis, Portable 3-D printed plastic optical fibre motion sensor for monitoring of breathing pattern and respiratory rate. IEEE 5th World Forum Internet Things, Limerick, Ireland, (2019) 144–148.

  77. N. Blaz, M. Kisic, L. Zivanov, and M. Damnjanovic, Displacement sensor fabricated by 3D additive manufacturing. 40th International Spring Seminar on Electronics Technology (ISSE), Sofia, Bulgaria (2017) 1–4.

    Google Scholar 

  78. N. Jeranče, N. Bednar, and G. Stojanović, An ink-jet printed eddy current position sensor, Sensors, 13 (2013) 5205–5219.

    ADS  Google Scholar 

  79. C. Hong, Y. Zhang, and L. Borana, Design, fabrication and testing of a 3D printed FBG pressure sensor, IEEE Access, 7 (2019) 38577–38583.

    Google Scholar 

  80. C. Hong, Y. Zhang, D. Su, and Z. Yin, Development of a FBG Based Hoop-Strain Sensor Using 3D Printing Method, IEEE Access, 7 (2019) 107154–107160.

    Google Scholar 

  81. S. Z. Guo, K. Qiu, F. Meng, S. H. Park, and M. C. McAlpine, 3D Printed Stretchable Tactile Sensors. Adv. Mater., 29 (2017) 1–8.

    Google Scholar 

  82. H. Wang, H. Yang, S. Zhang, L. Zhang, J. Li, and X. Zeng, 3D-printed flexible tactile sensor mimicking the texture and sensitivity of human skin. Adv. Mater. Technol., 4 (2019) 1900147.

    Google Scholar 

  83. H. Ota, S. Emaminejad, Y. Gao, A. Zhao, E. Wu, S. Challa, K. Chen, H. M. Fahad, A. K. Jha, D. Kiriya and W. Gao, Application of 3D printing for smart objects with embedded electronic sensors and systems. Adv. Mater. Technol., 1 (2016) 1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, H., Vaithiyanathan, D. & Kumar, H. A Review on Additive Manufactured Sensors. MAPAN 36, 405–422 (2021). https://doi.org/10.1007/s12647-020-00399-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-020-00399-w

Keywords

Navigation