Skip to main content
Log in

Reflection of thermo-elastic wave in semiconductor nanostructures nonlocal porous medium

热弹性波在半导体纳米结构非局部多孔介质中的反射

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The current work is an extension of the nonlocal elasticity theory to fractional order thermo-elasticity in semiconducting nanostructure medium with voids. The analysis is made on the reflection phenomena in context of three-phase-lag thermo-elastic model. It is observed that, four-coupled longitudinal waves and an independent shear vertical wave exist in the medium which is dispersive in nature. It is seen that longitudinal waves are damped, and shear wave is un-damped when angular frequency is less than the cut-off frequency. The voids, thermal and non-local parameter affect the dilatational waves whereas shear wave is only depending upon non-local parameter. It is found that reflection coefficients are affected by nonlocal and fractional order parameters. Reflection coefficients are calculated analytically and computed numerically for a material, silicon and discussed graphically in details. The results for local (classical) theory are obtained as a special case. The study may be useful in semiconductor nanostructure, geology and seismology in addition to semiconductor nanostructure devices.

摘要

本文的工作是在含空洞的半导体纳米结构介质中将非局部弹性理论推广到分数阶热弹性理论, 并对三相滞后热弹性模型中的反射现象进行了分析。研究表明, 介质中存在四个耦合的纵向波和一个 独立的纵向剪切波。当角频率小于截止频率时, 纵波衰减, 横波无衰减。膨胀波受空洞、热和非局域 参数的影响, 而横波只受非局部参数的影响。结果表明, 反射系数受非局部参数和分数阶参数的影响。 对硅材料的反射系数进行了解析计算和数值计算, 并用图形进行详细讨论。作为特例, 本研究得到了 局部(经典)理论的结果。本研究除可应用于半导体纳米结构器件外, 还可应用于地质学及地震学。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ERINGEN A C. Nonlocal continum field theories [M]. New York: Springer, 2002.

    Google Scholar 

  2. ALTAN B S. Uniqueness in the linear theory of nonlocal elasticity [J]. Bulletin of the Technical University of Istanbul, 1984, 37: 373–385.

    MathSciNet  MATH  Google Scholar 

  3. CHIRITA S. On some boundary value problems in nonlocal elasticity [J]. Amale Stiinfice ale Universitatii “AL. I. CUZA” din Iasi Tomul, 1976, 22(2): 231–237.

    MathSciNet  MATH  Google Scholar 

  4. CRACIUN B. On nonlocal thermoelsticity [J]. Ann St Univ, Ovidus Constanta, 1996, 5(1): 29–36.

    Google Scholar 

  5. EDELEN D G B, LAWS N. On the thermodynamics of systems with nonlocality [J]. Archive of Rational Mechanicsand Analysis, 1971, 43: 24–35.

    Article  MathSciNet  Google Scholar 

  6. EDELEN D G B, GREEN A E, LAWS N. Nonlocal continuum mechanics [J]. Archive of Rational Mechanics and Analysis, 1971, 43: 36–44.

    Article  MathSciNet  Google Scholar 

  7. ERINGEN A C, EDELEN D G B. On nonlocal elasticity [J]. International Journal of Engineering Sciences, 1972, 10: 233–248.

    Article  MathSciNet  Google Scholar 

  8. ERINGEN A C. Nonlocal polar elastic continua [J]. International Journal of Engineering Sciences, 1972, 10: 1–16.

    Article  MathSciNet  Google Scholar 

  9. ERINGEN A C. Nonlocal continuum theory of liquid crystals [J]. Molecular Crystal and Liquid Crystal, 1978, 75(1): 321–343.

    Article  Google Scholar 

  10. ERINGEN A C. Memory-dependent nonlocal electromagnetic elastic solids and superconductivity [J]. Journal of Mathematical Physics, 1991, 32: 787–796.

    Article  MathSciNet  Google Scholar 

  11. IESAN D. A theory of thermoelastic material with voids [J]. Acta Mechanica, 1986, 60: 67–89.

    Article  Google Scholar 

  12. SING D, KAUR G, TOMAR S K. Waves in nonlocal elastic solid with voids [J]. Journal of Elasticity, 2017, 128: 85–114.

    Article  MathSciNet  Google Scholar 

  13. CASAS P S, QUINTANILLA R. Exponential decay in one-dimensional porous-themoelasticity [J]. Mechanics Research Comunications, 2005, 32: 652–658.

    Article  Google Scholar 

  14. MAGANA A, QUINTANILLA R. On the time decay of solutions in one-dimensional theories of porous materials [J]. International Journal of Solids and Structures, 2006, 43: 3414–3427.

    Article  MathSciNet  Google Scholar 

  15. MAGANA A, QUINTANILLA R. On the time decay of solutions in porous elasticity with quasi-static micro voids [J]. Journal of Mathematical Analysis and Applications, 2007, 331: 617–630.

    Article  MathSciNet  Google Scholar 

  16. SOUFYANE A, AFILAL M, AOUAM M, CHACHA M. General decay of solutions of a linear one-dimensional porous-thermoelasticity system with a boundary control of memory type [J]. Nonlinear Analysis, 2010, 72: 3903–3910.

    Article  MathSciNet  Google Scholar 

  17. BACHHER M, SARKAR N, LAHIRI A. Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer [J]. International Journal of Mechanical Science, 2014, 89: 84–91.

    Article  Google Scholar 

  18. BACHHER M, SARKAR N, LAHIRI A. Fractional order thermoelastic interactions in an infinite porous material due to distributed time-dependent heat sources [J]. Meccanica, 2015, 50: 2167–217.

    Article  MathSciNet  Google Scholar 

  19. BACHHER M, SARKAR N. Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer [J]. Waves Random Complex Media, 2018, 29: 1–9.

    MathSciNet  Google Scholar 

  20. BISWAS S, SARKAR N. Fundamental solution of the steady oscillations equations in porous thermoelastic medium with dual-phase-lag model [J]. Mechanics of Materials, 2018, 126: 140–147.

    Article  Google Scholar 

  21. SARKAR N, TOMAR S K. Plane waves in nonlocal thermoelastic solid with voids [J]. Journal of Thermal Stresses, 2019, 42: 1–12.

    Article  Google Scholar 

  22. POVSTENKO Y Z. Fractional heat conduction equation and associated thermal stress [J]. Journal of Thermal Stresses, 2004, 28: 83–102.

    Article  MathSciNet  Google Scholar 

  23. CAPUTO M. Linear models of dissipation whose Q is almost frequency independent-II [J]. Geophysical Journal International, 1967, 13: 529–539.

    Article  Google Scholar 

  24. SHERIEF H H, EL-SAYED A, EL-LATIEF A. Fractional order theory of thermoelasticity [J]. International Journal of Solid and Structures, 2010, 47: 269–275.

    Article  Google Scholar 

  25. YOUSSEF H M. Theory of fractional order generalized thermoelasticity [J]. Journal of Heat Transfer, 2010, 132: 1–7.

    Article  Google Scholar 

  26. EZZAT M A, EL-KARAMANY A S, EZZATS M. Two temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer [J]. Journal of Nuclear Eng Design, 2012, 252: 267–277.

    Article  Google Scholar 

  27. EZZAT M A, EL KARAMAN A S, MOHSEN F. Fractional order theory in thermoelastic solid with three-phase lag heat transfer [J]. Archive of Applied Mechanics, 2012, 82: 557–572.

    Article  Google Scholar 

  28. HAMZA F, ABDOU M, ABD EL-LATIEF A M. Generalized fractional thermoelasticity associated with two relaxation times [J]. Journal of Thermal Stresses, 2014, 37: 1080–1098.

    Article  Google Scholar 

  29. HAMZA F, ABDOU M, ABD EL-LATIEF A M. 1D application on fractional generalized thermoelasticity associated with two relaxation times [J]. Mechanics of Advanced Material and Structures, 2016, 23: 689–703.

    Article  Google Scholar 

  30. IBRAHIM A. Generalized thermo elastic interaction in functional graded material with Fractional order three-phase lag heat transfer [J]. Journal of Central South University, 2015, 22(5): 1606–1613.

    Article  Google Scholar 

  31. SONG Y, BAI J T, REN Z. Study on the reflection of photo-thermal waves in a semiconducting medium under generalized thermo-elastic theory [J]. Acta Mechanica, 2012, 223: 1545–1557.

    Article  MathSciNet  Google Scholar 

  32. TANG F, SONG Y. Wave reflection in semiconductor nanostructures [J]. Theoretical and Applied mechanics Letters, 2018, 8: 160–163.

    Article  Google Scholar 

  33. IBRAHIM A, FARIS S A, AHMED E. A DPL model of photothermal interaction in a semiconductor material [J]. Waves in Random and Complex Media, 2019, 29: 328–343.

    Article  Google Scholar 

  34. JAHANGIR A, TANVIR F, ZENKOUR A M. Photothermo-elastic interaction in a semiconductor material with two relaxation times by a focused laser beam [J]. Advances in Aircraft and Spacecraft Sciences, 2020, 7: 41–52.

    Google Scholar 

  35. ALI H, JAHANGIR A, KHAN A. Reflection of waves in arotating semiconductor nanostructure medium through torsion-free boundary condition [J]. Indian Journal of Physics, 2019. https://doi.org/10.1007/s12648-019-01652-y.

  36. SUDIP M, NIHAR S, NANTU S. Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity [J]. Journal of Thermal Stresses, 2019, 42(8): 1035–1050.

    Article  Google Scholar 

  37. COWIN S C, NUNZIATO J W. Linear elastic materials with voids [J]. Journal of Elasticity, 1983, 13: 125–147.

    Article  Google Scholar 

  38. BACHHER M, NANTU S, LAHIRI A. Generalized thermoelastic infinite medium with voids subjected to an instantaneous heat sources with fractional derivative heat transfer [J]. International Journal of Mechanical Sciences, 2014, 89: 84–91.

    Article  Google Scholar 

  39. CHALLAMEL N, GRAZIDE C, PICANDET V, PERROT A, ZHANG Y A. A nonlocal Fourier’s law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices [J]. Comptese Rendus Mecanique, 2016, 344: 388–401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HASHMAT Ali provided the concept and edited the draft of manuscript. ADNAN Jahangir conducted the literature review and wrote the first draft of the manuscript. AFTAB Khan edited the draft of manuscript.

Corresponding author

Correspondence to Jahangir Adnan.

Additional information

Conflict of interest

HASHMAT Ali, ADNAN Jahangir and AFTAB Khan declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashmat, A., Adnan, J. & Aftab, K. Reflection of thermo-elastic wave in semiconductor nanostructures nonlocal porous medium. J. Cent. South Univ. 27, 3188–3201 (2020). https://doi.org/10.1007/s11771-020-4472-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4472-1

Key words

关键词

Navigation