Skip to main content
Log in

The Complete Genome Sequence of a Bacterial Strain with High Alkalic Xylanase Activity Isolated from the Sludge Near a Papermill

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Many organisms secrete xylanase, an import group of proteins hydrolyzing xylan, and thus are able to use xylan as their carbon source. In this study, we sequenced the whole genome of a bacterial strain, YD01, which was isolated from the sludge near the sewage discharge outlet of a papermill and showed high alkalic xylanase activity. Its genome consists of a chromosome and two plasmids. Six rRNA genes, 46 tRNA genes, 3136 CDSs as well as 955 repetitive sequences were predicted. 3046 CDSs were functionally annotated. Phylogenetic analysis on 16S rRNA shows that YD01 is a new species in Microbacterium genus and is taxonomically close to M. jejuense THG-C31T and M. kyungheense THG-C26T. A comparative study on phylogenetic trees of 16S rRNA and xylanase genes suggests that xylanase genes in YD01 may originate from horizontal gene transfer instead of ancestral gene duplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sun ZT, Zhao XY, Liu JJ, Du JH (2007) Microbial xylanases and their industrial applications. Biotechnology 17(2):93–97. https://doi.org/10.16519/j.cnki.1004-311x.2007.02.033

    Article  CAS  Google Scholar 

  2. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23. https://doi.org/10.1016/j.femsre.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  3. Ball AS, McCarthy AJ (1989) Production and properties of xylanase from actinomycetes. J Appl Bacteriol 66:439–444

    Article  CAS  Google Scholar 

  4. Okazaki W, Akiba T, Horikoshi E (1984) Production and properties of two types of xylanase from alkalophilic thermophilic Bacillus sp. Appl Microbiol Biotechnol 19(5):335–340

    Article  CAS  Google Scholar 

  5. Sabini E, Wilson KS, Danielsen S, Schulein M, Davies GJ (2001) Oligosaccharide binding to family 11 xylanases: both covalent intermediate and mutant product complexes display (2, 5)B conformations at the active centre. Acta Crystallogr D 57(9):1344–1347. https://doi.org/10.1107/s0907444901010873

    Article  CAS  PubMed  Google Scholar 

  6. Liu RT, Qu YB (1998) Structural domains of xylanase molecule. Progress Biotechnol 18(6):26–28. https://doi.org/10.13523/j.cb.19980605

    Article  CAS  Google Scholar 

  7. Black GW, Rixon JE, Clarke JH, Hazlewood GP, Ferreira LM, Bolam DN, Gilbert HJ (1997) Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates. J Biotechnol 57:59–69. https://doi.org/10.1016/s0168-1656(97)00089-8

    Article  CAS  PubMed  Google Scholar 

  8. Millward-Sadler SJ, Davidson K, Hazlewood GP, Black GW, Gilbert HJ, Clarke JH (1995) Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus. Biochem J 312(Pt 1):39–48. https://doi.org/10.1042/bj3120039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Irwin D, Jung ED, Wilson DB (1994) Characterization and sequence of a Thermomonospora fusca xylanase. Appl Environ Microbiol 60:763–770

    Article  CAS  Google Scholar 

  10. Winterhalter C, Heinrich P, Candussio A, Wich G, Liebl W (1995) Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 15:431–444. https://doi.org/10.1111/j.1365-2958.1995.tb02257.x

    Article  CAS  PubMed  Google Scholar 

  11. Yue XY, He XY, Niu TG, Liu XD, Hu HL, Liu SC (2007) Research advance in xylanase. Liquor-Making Sci Technol 4:113–115

    Google Scholar 

  12. Alokika SD, Singh B (2018) Utility of acidic xylanase of Bacillus subtilis subsp. subtilis JJBS250 in improving the nutritional value of poultry feed. 3 Biotech 8(12):503. https://doi.org/10.1007/s13205-018-1526-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aftab MN, Zafar A, Iqbal I, Kaleem A, Zia KM, Awan AR (2018) Optimization of saccharification potential of recombinant xylanase from Bacillus licheniformis. Bioengineered 9(1):159–165. https://doi.org/10.1080/21655979.2017.1373918

    Article  CAS  PubMed  Google Scholar 

  14. Luo L, Cai J, Wang C, Lin JG, Du X, Zhou AS, Xiang MX (2015) Purification and characterization of an alkaliphilic endo-xylanase from Streptomyces althioticus LMZM and utilization in pulp industry. J Chem Tech Biotechnol 91(4):165–171. https://doi.org/10.1002/jctb.4690

    Article  CAS  Google Scholar 

  15. Sanjivkumar M, Silambarasan T, Balagurunathan R, Immanuel G (2018) Biosynthesis, molecular modeling and statistical optimization of xylanase from a mangrove associated Actinobacterium Streptomyces variabilis (MAB3) ssing Box-Behnken design with its bioconversion efficacy. Int J Biol Macromol 118(Pt A):195–208. https://doi.org/10.1016/j.ijbiomac.2018.06.063

    Article  CAS  PubMed  Google Scholar 

  16. Chang SY, Guo YL, Wu B, He BF (2017) Extracellular expression of alkali tolerant xylanase from Bacillus subtilis lucky9 in E. coli and application for xylooligosaccharides production from agro-industrial waste. Int J Biol Macromol 96:249–256. https://doi.org/10.1016/j.ijbiomac.2016.11.032

    Article  CAS  PubMed  Google Scholar 

  17. Liu YL, Sun YW, Wang HG, Tang L (2019) Characterization of a novel multi-domain xylanase from Clostridium clariflavum with application in hydrolysis of corn cobs. Biotechnol Lett 41(10):1177–1186. https://doi.org/10.1007/s10529-019-02721-2

    Article  CAS  PubMed  Google Scholar 

  18. Walia A, Mehta P, Chauhan A, Kulshrestha S, Shirkot CK (2014) Purification and characterization of cellulase-free low molecular weight endo β-1,4 xylanase from an alkalophilic Cellulosimicrobium cellulans CKMX1 Isolated from mushroom compost. World J Microbiol Biotechnol 30(10):2597–2608. https://doi.org/10.1007/s11274-014-1683-3

    Article  CAS  PubMed  Google Scholar 

  19. Kim JH, Irwin D, Wilson DB (2004) Purification and characterization of Thermobifida fusca xylanase 10B. Can J Microbiol 50(10):835–843. https://doi.org/10.1139/w04-077

    Article  CAS  PubMed  Google Scholar 

  20. Bibra M, Kunreddy VR, Sani RK (2018) Thermostable xylanase production by Geobacillus sp. strain DUSELR13, and its application in ethanol production with lignocellulosic Biomass. Microorganisms 6(3):93. https://doi.org/10.3390/microorganisms6030093

    Article  CAS  PubMed Central  Google Scholar 

  21. Balaa BA, Brijs K, Gebruers K, Vandenhaute J, Wouters J, Housen I (2009) Xylanase XYL1p from Scytalidium acidophilum: site-directed mutagenesis and acidophilic adaptation. Bioresour Technol 100(24):6465–6471. https://doi.org/10.1016/j.biortech.2009.06.111

    Article  CAS  PubMed  Google Scholar 

  22. Chen Z, Liu YL, Zaky AA, Liu L, Chen YY, Li ST, Jia YM (2019) Characterization of a novel xylanase from Aspergillus flavus with the unique properties in production of xylooligosaccharides. J Basic Microbiol 59(4):351–358. https://doi.org/10.1002/jobm.201800545

    Article  CAS  PubMed  Google Scholar 

  23. Li Q, Wu QH, Sun BG, Yang R, Hou X, Teng C, Zhang CN, Li XT (2018) Effect of disulfide bridge on hydrolytic characteristics of xylanase from Penicillium janthinellum. Int J Biol Macromol 120(Pt A):405–413. https://doi.org/10.1016/j.ijbiomac.2018.08.099

    Article  CAS  PubMed  Google Scholar 

  24. Korkmaz MN, Ozdemir SC, Uzel A (2017) Xylanase production from marine derived Trichoderma pleuroticola 08ÇK001 strain isolated from mediterranean coastal sediments. J Basic Microbiol 57(10):839–851. https://doi.org/10.1002/jobm.201700135

    Article  CAS  PubMed  Google Scholar 

  25. Xiao WJ, Li HN, Xia WC, Yang YX, Hu P, Zhou SN, Hu YM, Liu XP, Dai YJ, Zhengbing Jiang ZB (2019) Co-expression of cellulase and xylanase genes in Sacchromyces cerevisiae toward enhanced bioethanol production from corn stover. Bioengineered 10(1):513–521. https://doi.org/10.1080/21655979.2019.1682213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhardwaj A, Mahanta P, Ramakumar S, Ghosh A, Leelavathi S, Reddy VS (2012) Emerging role of N- And C-terminal interactions in stabilizing (β/α)8 fold with special emphasis on family 10 xylanases. Comput Struct Biotechnol J 2:e201209014. https://doi.org/10.5936/csbj.201209014

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bera-Maillet C, Devillard E, Cezette M, Jouany JP, Forano E (2005) Xylanases and carboxy methyl cellulases of the rumen protozoa polyplastron multivesiculatum, Eudiplodinium Maggii and Entodinium sp. FEMS Microbiol Lett 244(1):149–156. https://doi.org/10.1016/j.femsle.2005.01.035

    Article  CAS  PubMed  Google Scholar 

  28. Tu B, Tao Z, Wang YP, Hu L, Li J, Zheng L, Zhou Y, Li JL, Xue FY, Zhu XB, Yuan H, Chen WL, Qin P, Ma BT, Li SG (2020) Membrane-associated xylanase-like protein OsXYN1 Is required for normal cell wall deposition and plant development in rice. J Exp Bot. https://doi.org/10.1093/jxb/eraa200

    Article  PubMed  Google Scholar 

  29. Li YF, Li XM, Zhang JX, Nie GX, Huang YQ, Zhao LX (2004) Screening of xylanase producing strain and studies on its fermentation condition. Biotechnology 14(1):25–27. https://doi.org/10.16519/j.cnki.1004-311x.2004.01.011

    Article  Google Scholar 

  30. Simpson H, Haufler UR, Daniel RM (1991) An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J 277:413–417. https://doi.org/10.1042/bj2770413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu XY, Chen HG, Liu QJ, Zhang SM, Jia XC (2005) Comparative study on enzymic properties of xylanases by the mutant and wild strain of Aspergillus niger. J Henan Agric Univ 39(1):82–85. https://doi.org/10.16445/j.cnki.1000-2340.2005.01.019

    Article  CAS  Google Scholar 

  32. Zhou XM, Xia LM (2004) Study on production and property of xylanase by Thermoascus aurantiacus using solid state fermentation. Food Ferment Ind 30(10):35–38. https://doi.org/10.13995/j.cnki.11-1802/ts.2004.10.008

    Article  CAS  Google Scholar 

  33. Horikoshi K, Atsukawa Y (1973) Xylanase produced by alkaliphilic Bacillus sp. No.C-59-2. Agric Biol Chem 37:2097–2103

    Article  CAS  Google Scholar 

  34. Chen SC, Qu YB, Liu XM, Gao PJ (2000) Purification and some properties of alkali-tolerant xylanase from Bacillus pumilus A-30. Chin J Biochem Mol Biol 16(5):698–701. https://doi.org/10.3969/j.issn.1007-7626.2000.05.027

    Article  CAS  Google Scholar 

  35. Yang G, Li Y (1999) Screening of alkaline xylanase producing strain and some properties of the enzyme. J Nanjing Agric Univ 22(1):111–112. https://doi.org/10.3321/j.issn:1000-2030.1999.01.026

    Article  Google Scholar 

  36. Zheng HC, Liu YH, Liu XG, Han Y, Wang JL, Lu FP (2012) Screening of alkaline xylanase producing strains and cloning, expression and characterization of xylanase gene XynG1–3. Biotechnol Bull 28(10):106–113. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2012.10.010

    Article  Google Scholar 

  37. Ko CH, Chen WL, Tsai CH, Jane WN, Liu CC, Tu J (2007) Paenibacillus campinasensis BL11: a wood material-utilizing bacterial strain isolated from black liquor. Bioresour Technol 98(14):2727–2733. https://doi.org/10.1016/j.biortech.2006.09.034

    Article  CAS  PubMed  Google Scholar 

  38. Gan YT, Zhou H, Li Y, Dong ZS, Zhao S, Yan DZ (2018) Isolation and identification of an alkaline xylanase-producing bacterium and enzymatic analysis. Food Sci 39(20):155–160. https://doi.org/10.7506/spkx1002-6630-201820023

    Article  Google Scholar 

  39. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  Google Scholar 

  40. Kozlov A, Darriba D, Flouri T, Morel B, Stamatakis A (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35(21):4453–4455. https://doi.org/10.1093/bioinformatics/btz305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Letunic I, Bork P (2007) Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23(1):127–128. https://doi.org/10.1093/bioinformatics/btl529

    Article  CAS  PubMed  Google Scholar 

  42. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016. https://doi.org/10.1006/jmbi.2000.3903

    Article  CAS  PubMed  Google Scholar 

  43. Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194. https://doi.org/10.1099/00221287-139-2-187

    Article  CAS  Google Scholar 

  44. Gilbert HJ, Sullivan DA, Jenkins G, Kellett LE, Minton NP, Hall J (1988) Molecular cloning of multiple xylanase genes from Pseudomonas fluorescens subsp. cellulose. J Gen Microbiol 134(12):3239–3247. https://doi.org/10.1099/00221287-134-12-3239

    Article  CAS  PubMed  Google Scholar 

  45. Yang RC, MacKenzie CR, Bilous D, Narang SA (1989) Identification of two distinct Bacillus circulans Xylanases by molecular cloning of the genes and expression in Escherichia Coli. Appl Environ Microbiol 55(3):568–572

    Article  CAS  Google Scholar 

  46. Biely P, Markovic O, Mislovicova D (1985) Sensitive detection of endo-1,4-beta-glucanases and endo-1,4-beta-xylanases in gels. Anal Biochem 144(1):147–151. https://doi.org/10.1016/0003-2697(85)90096-x

    Article  CAS  PubMed  Google Scholar 

  47. Wong KK, Tan LU, Saddler JN (1988) Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52(3):305–317

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 31770119 and 31800111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-zhong Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Feng, H., Li, X. et al. The Complete Genome Sequence of a Bacterial Strain with High Alkalic Xylanase Activity Isolated from the Sludge Near a Papermill. Curr Microbiol 77, 3945–3952 (2020). https://doi.org/10.1007/s00284-020-02227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02227-5

Navigation