Skip to main content
Log in

Evaluation of design schemes for urban squares in arid climate cities, Mendoza, Argentina

  • Research Article
  • Published:
Building Simulation Aims and scope Submit manuscript

Abstract

The design of urban squares in the city of Mendoza, Argentina, is based on aesthetic and landscaping criteria without consider strategies to enhance the benefits that green areas generate on the city’s micrometeorological conditions. The paper aims to evaluate different design alternatives with the purpose to determine which proportion and distribution of green and sealed areas contributes to achieve the best conditions in terms of thermal behavior and comfort. ENVI-met software was used to simulate thermal conditions over twenty three scenarios, and COMFA method was employed to determine comfort in the scenarios that show the best thermal behaviour and are representative of current design trends. The results show that the most effective scheme for the memorial squares rehabilitation is the one concentrating 60% of woodlot around a sealed center with an area that does not exceed 20% the square surface. Another effective alternative is the one concentrating 60% of woodlot at the center of the area. These findings highlight the importance of an adequate relation between proportion and distribution of woodlot/sealed areas to improve thermal performance and comfort conditions of open spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali-Toudert F, Mayer H (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41: 94–108.

    Article  Google Scholar 

  • Ali-Toudert F, Mayer H (2007). Effects of asymmetry, galleries, overhanging façlades and vegetation on thermal comfort in urban street canyons. Solar Energy, 81: 742–754.

    Article  Google Scholar 

  • Bastian O, Haase D, Grunewald K (2012). Ecosystem properties, potentials and services — The EPPS conceptual framework and an urban application example. Ecological Indicators, 21: 7–16.

    Article  Google Scholar 

  • Boccolini SM (2016). El evento urbano. La ciudad como un sistema complejo lejos del equilibrio. Revista del área de estudios urbanos, 16(6): 186–218. (in Spanish)

    Google Scholar 

  • Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97: 147–155.

    Article  Google Scholar 

  • Brown RD, Gillespie TJ (1995) Microclimate Landscape Design. New York: John Wiley & Sons.

    Google Scholar 

  • Bruse M, Fleer H (1998). Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software, 13: 373–384.

    Article  Google Scholar 

  • Bruse M (2004). ENVI-met 3.0: Updated Model Overview. Available at http://www.envi-met.com.

  • Córica L, Pattini A (2009). Study of the potential of natural light in low and high density urban environments in the oasis city of Mendoza, in summer. Journal of Light & Visual Environment, 33: 101–106.

    Article  Google Scholar 

  • Correa EN, Pattini AE, Córica ML, Fornés M, Lesino G (2005). Evaluación del factor de visión de cielo a partir del procesamiento digital de imágenes hemiesféricas. Influencia de la configuración del cañón urbano en la disponibilidad del recurso solar. Avances en Energías Renovables y Medio Ambiente, 9: 11.43–11.48. (in Spanish)

    Google Scholar 

  • Elnabawi MH, Hamza N (2019). Behavioural perspectives of outdoor thermal comfort in urban areas: A critical review. Atmosphere, 11: 51.

    Article  Google Scholar 

  • Gaitani N, Mihalakakou G, Santamouris M (2007). On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Building and Environment, 42: 317–324.

    Article  Google Scholar 

  • Huttner S (2012). Further Development and Application of the 3D Microclimate Simulation Envi-met. PhD Thesis, Johannes Gutenberg University Mainz, Germany.

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15: 259–263.

    Article  Google Scholar 

  • Lee H, Mayer H (2018). Maximum extent of human heat stress reduction on building areas due to urban greening. Urban Forestry & Urban Greening, 32: 154–167.

    Article  Google Scholar 

  • Lenzholzer S (2010). Engrained experience—A comparison of microclimate perception schemata and microclimate measurements in Dutch urban squares. International Journal of Biometeorology, 54: 141–150.

    Article  Google Scholar 

  • Lenzholzer S (2012). Research and design for thermal comfort in Dutch urban squares. Resources, Conservation and Recycling, 64: 39–48.

    Article  Google Scholar 

  • Monteoliva J, Villalba A, Pattini A (2012). Impacto de la utilización de bases climáticas regionales en la simulación de alta precisión de iluminación natural. Avances en Energías Renovables y Medio Ambiente, 16: 57–64. (in Spanish)

    Google Scholar 

  • Noro M, Lazzarin R (2015). Urban heat island in Padua, Italy: Simulation analysis and mitigation strategies. Urban Climate, 14: 187–196.

    Article  Google Scholar 

  • Pauleit S, Jones N, Nyhuus S, Pirnat J, Salbitano F (2005). Urban forest resources in European cities. In: Konijnendijk C, Nilsson K, Randrup T, Schipperijn J (eds), Urban Forests and Trees. Berlin: Springer.

    Google Scholar 

  • Picot X (2004). Thermal comfort in urban spaces: impact of vegetation growth. Energy and Buildings, 36: 329–334.

    Article  Google Scholar 

  • Pixel de cielo 1.0 Registro N°549880 Fecha 23/02/2007.

  • Rašković S, Decker R (2015). The influence of trees on the perception of urban squares. Urban Forestry & Urban Greening, 14: 237–245.

    Article  Google Scholar 

  • Ruiz MA, Correa EN (2015). Suitability of different comfort indices for the prediction of thermal conditions in tree-covered outdoor spaces in arid cities. Theoretical and Applied Climatology, 122: 69–83.

    Article  Google Scholar 

  • Scudo G, Dessi V (2006). Thermal comfort in urban space renewal. In: Proceedings of the 23rd Conference on Passive and Low Energy Architecture (PLEA), Geneva, Switzerland.

  • Simon H (2016). Modeling urban microclimate—Development, implementation and evaluation of new and improved calculation methods for the urban microclimate model ENVI-met. PhD Thesis, Johannes Gutenberg University Mainz, Germany.

    Google Scholar 

  • Song B, Park K (2015). Contribution of greening and high-albedo coatings to improvements in the thermal environment in complex urban areas. Advances in Meteorology, 2015: 1–14.

    Google Scholar 

  • Sosa MB, Correa EN, Cantón MA (2017). Urban grid forms as a strategy for reducing heat island effects in arid cities. Sustainable Cities and Society, 32: 547–556.

    Article  Google Scholar 

  • Sosa MB, Correa EN, Cantón MA (2018). Neighborhood designs for low-density social housing energy efficiency: Case study of an arid city in Argentina. Energy and Buildings, 168: 137–146.

    Article  Google Scholar 

  • Stocco S, Cantón MA, Correa E (2013). Evaluación de las condiciones térmicas de verano y eficiencia ambiental de distintos diseños de plazas urbanas en Mendoza, Argentina. Hábitat sustentable, 3: 19–34. (in Spanish)

    Google Scholar 

  • Stocco S, Cantón MA, Correa EN (2015). Design of urban green square in dry areas: Thermal performance and comfort. Urban Forestry & Urban Greening, 14: 323–335.

    Article  Google Scholar 

  • Stocco S, Cantón MA, Correa EN (2016). Determinación de las condiciones de habitabilidad termica en plazas urbanas insertas en contextos áridos. In: Proceedings of XX Congreso Arquisur Habitat Sustentable, Concepción, Chile. (in Spanish)

  • Stocco S, Cantón A, Correa E (2018). Alternativas de diseño Para mejorar El desempeño ambiental de plazas urbanas de Mendoza (Argentina). Evaluación mediante simulación con ENVI-met 3.1. Informes De La Construcción, 70: 253.

    Article  Google Scholar 

  • Strohbach MW, Haase D (2012). Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landscape and Urban Planning, 104: 95–104.

    Article  Google Scholar 

  • Wania A, Bruse M, Blond N, Weber C (2012). Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. Journal of Environmental Management, 94: 91–101.

    Article  Google Scholar 

  • Yang X, Zhao L, Bruse M, Meng Q (2013). Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Building and Environment, 60: 93–104.

    Article  Google Scholar 

  • Yezioro A, Capeluto IG, Shaviv E (2006). Design guidelines for appropriate insolation of urban squares. Renewable Energy, 31: 1011–1023.

    Article  Google Scholar 

  • Zacharias J, Stathopoulos T, Wu H (2001). Microclimate and downtown open space activity. Environment and Behavior, 33: 296–315.

    Article  Google Scholar 

  • Zhang B, Xie G, Zhang C, Zhang J (2012). The economic benefits of rainwater-runoff reduction by urban green spaces: A case study in Beijing, China. Journal of Environmental Management, 100: 65–71.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by CONICET (Consejo Nacionalde investigación Científica y Tecnológica) and APCyT (AgenciaNacional de Promoción Científica y Tecnológica).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Stocco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stocco, S., Cantón, M.A. & Correa, E. Evaluation of design schemes for urban squares in arid climate cities, Mendoza, Argentina. Build. Simul. 14, 763–777 (2021). https://doi.org/10.1007/s12273-020-0691-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12273-020-0691-5

Keywords

Navigation