Skip to main content

Advertisement

Log in

Hyperaccumulation of cadmium by scallop Chlamys farreri revealed by comparative transcriptome analysis

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a hazardous environmental contaminant, which has a serious effect on the ecosystem, food safety and human health. Scallop could accumulate high concentration of Cd from the environment and has been regarded as a Cd hyper-accumulator. In this work, we investigated the antioxidative defense, detoxification and transport of Cd in the kidneys of scallops by transcriptome analysis. A total of 598 differentially expressed genes including 387 up-regulated and 211 down-regulated ones were obtained during Cd exposure, and 46 up-regulated and 260 down-regulated ones were obtained during depuration. Cadmium exposure could cause oxidative stress in the kidneys, which was particularly shown in the pathways involved in proteasome and oxidative phosphorylation. The mRNA expression of 5 metallothionein (MT) genes were overexpressed under Cd exposure and significantly decreased during Cd depuration, which played a vital role in Cd chelation and detoxification. The expression of divalent metal transporter (DMT) genes were down-regulated insignificantly during accumulation and depuration of Cd, which suggested that the DMT played little roles in Cd transport in scallops. A positive relationship in the expression of the zinc transporter (ZIP6 and ZIP1) genes with Cd exposure and depuration was observed, which confirmed its important role for Cd uptake in the kidneys of scallops. 26S proteasome activities and MT expression were Cd-dependent. This study supplied the important reference on the hyperaccumulation of Cd by scallops and identified some effective bioindicators for the environmental risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    Article  CAS  PubMed  Google Scholar 

  • An LH, Zheng BH, Liu RZ, Fan Q, Wang QK, Luo YF (2014) Transcriptomic response to estrogen exposure in the male Zhikong scallop, Chlamys farreri. Mar Pollut Bull 89:59–66

    Article  CAS  PubMed  Google Scholar 

  • Bach L, Sonne C, Riget FF, Dietz R, Asmund G (2014) A simple method to reduce the risk of cadmium exposure from consumption of Iceland scallops (Chlamys islandica) fished in Greenland. Environ Int 69:100–103

    Article  CAS  PubMed  Google Scholar 

  • Bannon DI, Abounader R, Lees PSJ, Bressler JP (2003) Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. Am J Physiolo Cell Physiol 284(1):44–50

    Article  Google Scholar 

  • Bebianno M, Langston WJ (1993) Turnover rate of metallothionein and cadmium in Mytilus edulis. Biol Met 6:239–244

    CAS  Google Scholar 

  • Bebianno M, Langston WJ (1998) Cadmium and metallothionein turnover in different tissues of the gastropod Littorina littorea. Talanta 46:301–313

    Article  CAS  PubMed  Google Scholar 

  • Brullea F, Morganc AJ, Cocquerelle C, Vandenbulcke F (2010) Transcriptomic underpinning of toxicant-mediated physiological function alterations in three terrestrial invertebrate taxa: a review. Environ Pollu 158(9):2793–2808

    Article  CAS  Google Scholar 

  • Chang YT, Jong KJ, Liao BK, Wu SM (2007) Cloning and expression of metallothionein cDNA in the hard clam (Meretrix lusoria) upon cadmium exposure. Aquaculture 262:504–513

    Article  CAS  Google Scholar 

  • Chen J, Gálvez-Peralta M, Zhang X, Deng J, Liu Z, Nebert DW (2018) In utero gene expression in the slc39a8(neo/neo) knockdown mouse. Sci Rep 8:10703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Xu Y, Han Q, Yao Y, Xing H, Teng X (2019) Immunosuppression, oxidative stress, and glycometabolism disorder caused by cadmium in common carp (Cyprinus carpio L.): Application of transcriptome analysis in risk assessment of environmental contaminant cadmium. J Hazard Mater 366:386–394

    Article  CAS  PubMed  Google Scholar 

  • Choi HJ, Ji JY, Chung KH, Ahn IY (2007) Cadmium bioaccumulation and detoxification in the gill and digestive gland of the Antarctic bivalve Laternula elliptica. Comp Biochem Physiol C 145:227–235

    Google Scholar 

  • David E, Tanguy A, Moraga D (2012) Characterisation and genetic polymorphism of metallothionein gene CgMT4 in experimental families of Pacific oyster Crassostrea gigas displaying summer mortality. Biomarkers 17:85–95

    Article  CAS  PubMed  Google Scholar 

  • Evtushenko ZS, Lukyanova NN, Belcheva NN (1990) Cadmium bioaccumulation in organs of scallop Mizuhopecten yessoensis. Mar Biol 104:247–250

    Article  CAS  Google Scholar 

  • Fang D, Xu G, Hu Y, Pan C, Xie L, Zhang R (2011) Identification of genes directly involved in shell formation and their functions in pearl oyster Pinctada fucata. Plos One 6(7):e21860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujishiro H, Hamao S, Tanaka R, Kambe T, Himeno S (2017) Concentration-dependent roles of DMT1 and ZIP14 in cadmium absorption in Caco-2 cells. J Toxicol Sci 42:559–567

    Article  CAS  PubMed  Google Scholar 

  • Fujishiro H, Ohashi T, Takuma M, Himeno S (2013) Suppression of ZIP8 expression is a common feature of cadmium-resistant and manganese-resistant RBL-2H3 cells. Metallomics 5:437–444

    Article  CAS  PubMed  Google Scholar 

  • Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73:1413–1423

    Article  CAS  PubMed  Google Scholar 

  • Gobe G, Grane D (2010) Mitochondria, reactive oxygen species and cadmium toxicity in the kidney. Toxicol Lett 198:49–55

    Article  CAS  PubMed  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  CAS  PubMed  Google Scholar 

  • He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, Nebert DW (2006) ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol Pharmacol 70:171–80

    Article  CAS  PubMed  Google Scholar 

  • Himeno S, Fujishiro H (2019) Roles of metal transporters in cellular cadmium transport in mammals. In: Himeno S, Aoshima K (eds) Cadmium toxicity. Current topics in environmental health and preventive medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-3630-0_13

  • Hu X, Guo H, He Y, Wang S, Zhang L, Wang S, Huang X, Roy SW, Lu W, Hu J, Bao Z (2010) Molecular characterization of Myostatin gene from Zhikong scallop Chlamys farreri (Jones et Preston 1904). Genes Genet Syst 85(3):207–218

    Article  CAS  PubMed  Google Scholar 

  • Kang XM, Zhao YF, Shang DR, Zhai YX, Ning JS, Sheng XF (2018) Elemental analysis of sea cucumber from five major production sites in China: A chemometric approach. Food Control 94:361–367

    Article  CAS  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    Article  CAS  PubMed  Google Scholar 

  • Kwong RWM, Niyogi S (2012) Cadmium transport in isolated enterocytes of freshwater rainbow trout: Interactions with zinc and iron, effects of complexation with cysteine, and an ATPase-coupled efflux. Comp Biochem Physiol C 155(2):238–246

    CAS  Google Scholar 

  • Leazer TM, Liu Y, Klaassen CD (2002) Cadmium absorption and its relationship to divalent metal transporter-1 in the pregnant rat. Toxicol Appl Pharmacol 185:18–24

    Article  CAS  PubMed  Google Scholar 

  • Lee BD, Hwang S (2015) Overexpression of NtUBQ2 encoding Ub-extension protein enhances cadmium tolerance by activating 20S and 26S proteasome in tobacco (Nicotiana tabacum). Acta Physiol Plant 37:22

    Article  CAS  Google Scholar 

  • Lemoine S, Laulier M (2003) Potential use of the levels of the mRNA of a specific metallothionein isoform (MT-20) in mussel (Mytilus edulis) as a biomarker of cadmium contamination. Mar Pollut Bull 46:1450–1455

    Article  CAS  Google Scholar 

  • Li F, Huang S, Wang L, Yang J, Zhang H, Qiu L, Li L, Song L (2011) A macrophage migration inhibitory factor like gene from scallop Chlamys farreri: involvement in immune response and wound healing. Dev Comp Immunol 35(1):62–71

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Sun XQ, Hu XL, Xun XG, Zhang JB, Guo XM, Jiao WQ, Zhang LL, Liu WZ, Wang J, Li J, Sun Y, Miao Y, Zhang XK, Cheng TR, Xu GL, Fu XT, Wang YF, Yu XR, Huang XT, Lu W, Lv J, Mu C, Wang DW, Li X, Xia Y, Li YJ, Yang ZH, Wang FL, Zhang L, Xing Q, Dou HQ, Ning XH, Dou JZ, Li YP, KongDX, Liu YR, Jiang Z, Li RQ, Wang S, Bao ZM (2017) Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins. Nat Commun 8:1721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin YF, Hassan Z, Talukdar S, Schat H, Aarts MG (2016) Expression of the znt1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLoS ONE 11:e0149750

  • Liu F, Wang WX (2011) Differential role of metallothionein-like proteins in cadmium uptake and elimination by the scallop Chlamys nobilis. Environ Toxicol Chem 30(3):738–746

    Article  CAS  PubMed  Google Scholar 

  • Marie V, Gonzalez P, Baudrimont M, Boutet I, Moraga D, Bourdineaud JP, Boudou A (2006a) Metallothionein gene expression and protein levels in triploid and diploid oysters Crassostrea gigas after exposure to cadmium and zinc. Environ Toxicol Chem 25(2):412–418

    Article  CAS  PubMed  Google Scholar 

  • Marie V, Gonzalez P, Baudrimont M, Bourdineaud JP, Boudou A (2006b) Metallothionein response to cadmium and zinc exposures compared in two freshwater bivalves, Dreissena polymorpha and Corbicula fluminea. Biometals 19:399–407

    Article  CAS  PubMed  Google Scholar 

  • McDowell IC, Nikapitiya C, Aguiar D, Lane CE, Istrail S, Gomez-Chiarri M (2014) Transcriptome of American oysters, Crassostrea virginica, in response to bacterial challenge: insights into potential mechanisms of disease resistance. PLoS ONE 9(8):e105097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng J, Wang W, Li L, Yin Q, Zhang G (2017) Cadmium effects on DNA and protein metabolism in oyster (Crassostrea gigas) revealed by proteomic analyses. Sci Rep 7:11716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng XL, Liu M, Jiang KY, Wang BJ, Tian X, Sun SJ, Luo ZY, Qiu CW, Wang L (2013) De novo characterization of Japanese scallop Mizuhopecten yessoensis transcriptome and analysis of its gene expression following cadmium exposure. PLoS ONE 8:e64485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milan M, Coppe A, Reinhardt R, Cancela LM, Leite RB, Saavedra C, Ciofi C, Chelazzi G, Patarnello T, Bortoluzzi S (2011) Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: genomic tools for environmental monitoring. BMC Genomics 12:234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min KS, Iwata N, Tetsutikawahara N, Onosaka S, Tanaka K (2008a) Effect of hemolytic and iron-deficiency anemia on intestinal absorption and tissue accumulation of cadmium. Toxicol Lett 179:48–52

    Article  CAS  PubMed  Google Scholar 

  • Min KS, Ueda H, Kihara T, Tanaka K (2008b) Increased hepatic accumulation of ingested Cd is associated with upregulation of several intestinal transporters in mice fed diets deficient in essential metals. Toxicol Sci 106(1):284–289

    Article  CAS  PubMed  Google Scholar 

  • Nagy Z, Montigny C, Leverrier P, Yeh S, Goffeau A, Garrigos M, Falson P (2006) Role of the yeast ABC transporter Yor1p in cadmium detoxification. Biochimie 889(11):1665–1671

    Article  CAS  Google Scholar 

  • Nebert DW, Liu Z (2019) SLC39A8 gene encoding a metal ion transporter: discovery and bench to bedside. Hum Genomics 13:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okubo M, Yamada K, Hosoyamada M, Shibasaki T, Endou H (2003) Cadmium transport by human Nramp 2 expressed in Xenopus laevis oocytes. Toxicol Appl Pharmacol 187:162–167

    Article  CAS  PubMed  Google Scholar 

  • Pan K, Wang W (2008) The subcellular fate of cadmium and zinc in the scallop Chlamys nobilis during waterborne and dietary metal exposure. Aquat Toxicol 90:253–260

    Article  CAS  PubMed  Google Scholar 

  • Park JD, Cherrington NJ, Klaassen CD (2002) Intestinal absorption of cadmium is associated with divalent metal transporter 1 in rats. Toxicol Sci 68:288–294

    Article  CAS  PubMed  Google Scholar 

  • Pauletto M, Milan M, Moreira R, Novoa B, Figueras A, Babbucci M, Patarnello T, Bargelloni L (2014) Deep transcriptome sequencing of Pecten maximus hemocytes: a genomic resource for bivalve immunology. Fish Shell Immunol 37(1):154–165

    Article  CAS  Google Scholar 

  • Peake BM, Marsden ID, Ashoka S, Bremner G (2010) Interspecific and geographical variation in trace metal concentrations of New Zealand scallops. J Shell Res 29:387–394

    Article  Google Scholar 

  • Pesch GG, Stewart N (1980) Cadmium toxicity to three species of estuarine invertebrates. Mar Environ Res 3(2):145–156

    Article  CAS  Google Scholar 

  • Picard V, Govoni G, Jabado N, Gros P (2000) Nramp 2 (DCT1/DMT1) expressed at the plasma membrane transports iron and other divalent cations into a calcein-accessible cytoplasmic pool. J Biol Chem 275:35738–35745

    Article  CAS  PubMed  Google Scholar 

  • Polge C, Jaquinod M, Holzer F, Bourquiqnon J, Walling L, Brouquisse R (2009) Evidence for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway: activation in response to cadmium. J Biol Chem 284(51):35412–35424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poteet E, Winters A, Xie L, Ryou MG, Liu R, Yang SH (2014) In vitro protection by pyruvate against cadmium-induced cytotoxicity in hippocampal HT-22 cells. J Appl Toxicol 34(8):903–913

    Article  CAS  PubMed  Google Scholar 

  • Rakvács Z, Kucsma N, Gera M, Igriczi B, Kiss K, Barna J, Kovács D, Vellai T (2019) The human ABCB6 protein is the functional homologue of HMT-1 proteins mediating cadmium detoxification. Cell Mol Life Sci 76(20):4131–4144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roesijadi G, Klerks PL (1989) Kinetic analysis of cadmium binding to metallothionein and other intracellular ligands in oyster gills. J Exp Zool 251(1):1–12

    Article  CAS  Google Scholar 

  • Shi X, Wang L, Zhou Z, Yang C, Gao Y, Wang L, Song L (2012a) The arginine kinase in Zhikong scallop Chlamys farreri is involved in immunomodulation. Dev Comp Immunol 37(2):270–278

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Zhou Z, Wang L, Yue F, Wang M, Yang C, Song L (2012) The immunomodulation of acetylcholinesterase in zhikong scallop Chlamys farreri. PLoS ONE 7(1):e30828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder MJ (2000) Cytochrome P450 enzymes in aquatic invertebrates: recent advances and future directions. Aquat Toxicol 48:529–547

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Li Y, Wu Q, Luo HM, Sun YZ, Song JY, Lui EMK, Chen SL (2010) De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 11:262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun M, Li Y, Liu Y, Lee SC, Wang L (2016) Transcriptome assembly and expression of profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense. Sci Rep 6:19405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallkvist J, Bowlus CL, Lonnerdal B (2001) DMT1 gene expression and cadmium absorption in human absorptive enterocytes. Toxicol Lett 122:171–177

    Article  CAS  PubMed  Google Scholar 

  • Thévenod F (2010) Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals 23(5):857–875

    Article  PubMed  CAS  Google Scholar 

  • Verani CN (2012) Metal complexes as inhibitors of the 26S proteasome in tumor cells. JInorg Biochem 106:59–67

    CAS  Google Scholar 

  • Wang J, Lv ZY, Lei ZY, Chen ZY, Lv B, Yang HL, Wang Z, Song QS (2019) Expression and functional analysis of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata under cadmium stress. Ecotoxicol Environ Saf 172:19–25

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Song L, Ni D, Zhang H, Liu W (2008) Alteration of metallothionein mRNA in bay scallop Argopecten irradians under cadmium exposure and bacteria challenge. Comp Biochem Physiol C 149(1):50–57

    Google Scholar 

  • Wang S, Hou R, Bao Z, Du H, He Y, Su H, Zhang Y, Fu X, Jiao W, Li Y, Zhang L, Wang S, Hu X (2013) Transcriptome sequencing of Zhikong Scallop (Chlamys farreri) and comparative transcriptomic analysis with Yesso scallop (Patinopecten yessoensis). PLoS ONE 8(5):e63927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WX, Lu GY (2017) Heavy metals in bivalve mollusks. In: Schrenk D, Cartus A (eds) Chemical contaminants and residues in food. Elsevier, United Kingdom. Doi: https://doi.org/10.1016/B978-0-08-100674-0.00021-7

  • Wang WX, Rainbow PS (2008) Comparative approaches to understand metal bioaccumulation in aquatic animals. Comp Biochem Physiol C 148:315–323

    Google Scholar 

  • Yamamoto FY, Diamante GD, Santana MS, Santos DR, Bombardeli R, Martins CC, Oliveira Ribeiro CA, Schlenk D (2018) Alterations of cytochrome P450 and the occurrence of persistent organic pollutants in tilapia caged in the reservoirs of the Iguacu River. Environ Pollut 240:670–682

    Article  CAS  PubMed  Google Scholar 

  • Zhan A, Hu J, Hu X, Hui M, Wang M, Peng W, Huang X, Wang S, Lu W, Sun C, Bao Z (2009) Construction of microsatellite-based linkage maps and identification of size-related quantitative trait loci for Zhikong scallop (Chlamys farreri). Anim Genet 40(6):821–831

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Shi ZR, Wang XL, Deng SG, Lin HM (2015) Depuration of cadmium from blue musses (Mytilus edulis) by hydrolysis peptides and chelating metal elements. Food Res Int 73:162–168

    Article  CAS  Google Scholar 

  • Zhang H, Zhai Y, Yao L, Jiang Y, Li F (2016) Discovery of genes associated with cadmium accumulation from gill of scallop Chlamys farreri based on high-throughput sequencing. Genes Genomics 38(5):439–445

    Article  CAS  Google Scholar 

  • Zhang H, Zhai Y, Yao L, Jiang Y, Li F (2017) Comparative transcriptomics reveals genes involved in metabolic and immune pathways in the digestive gland of scallop Chlamys farreris following cadmium exposure. Chin J Oceanol Limn 35(3):603–612

    Article  CAS  Google Scholar 

  • Zhou Z, Ni D, Wang M, Wang L, Wang L, Shi X, Feng Y, Liu R, Song L (2012) The phenoloxidase activity and antibacterial function of a tyrosinase from scallop Chlamys farreri. Fish Shellfish Immunol 33:375–381

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Wang L, Shi X, Zhang H, Gao Y, Wang M, Kong P, Qiu L, Song L (2011a) The modulation of catecholamines to the immune response against bacteria Vibrio anguillarum challenge in scallop Chlamys farreri. Fish Shellfish Immunol 31:1065–1071

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Yang J, Wang L, Zhang H, Gao Y, Shi X, Wang M, Kong P, Qiu L, Song L (2011) A dopa decarboxylase modulating the immune response of scallop Chlamys farreri. PLoS ONE 6(4):e18596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and development Program of China (No. 2017YFC1600702), the Key Projects of Intergovernmental International Cooperation in Science and Technology Innovation (No. 2019YFE0103800) and the Central Public-interest Scientific Institution Basal Research Fund, YSFRI, CAFS (No. 20603022020014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuming Kang or Jinsong Ning.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Kang, X., Shang, D. et al. Hyperaccumulation of cadmium by scallop Chlamys farreri revealed by comparative transcriptome analysis. Biometals 33, 397–413 (2020). https://doi.org/10.1007/s10534-020-00257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-020-00257-x

Keywords

Navigation