Skip to main content

Advertisement

Log in

Effect of temperature and filler volume fraction on the creep and recovery behaviour of MWCNT–COOH–reinforced polypropylene films

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Nonlinear viscoelastic behaviour of –COOH functionalized multi-walled carbon nanotubes reinforced polypropylene nanocomposites is examined up to 2% MWCNT concentration. Isochronal creep and strain recovery experiments are conducted in dynamic mechanical analyser with oscillatory inputs. Creep stress level of 5 MPa is selected and successive creep and recovery experiments are performed at \(-\,20\,^\circ \)C, \(25\,^\circ \)C and \(50\,^\circ \)C to analyse the effect of temperature and MWCNT concentration on strain developed during creep loading and strain recovery stages. A well-known Schapery nonlinear viscoelastic solid model with Zapas–Crissman viscoplastic term is fitted to the experimental observations. Stress-dependent nonlinear model parameters are obtained under temperature and MWCNT loading. Viscoelastic and viscoplastic strains are predicted at the end of recovery period. High temperatures and low concentrations of MWCNT are observed to cause higher viscoplastic strain. Strengthening MWCNT up to 1% improves the thermomechanical behaviour and viscoelastic recovery and decreases the viscoplastic strain in nanocomposites. Temperature-dependent compliance behaviour of nanocomposites is investigated with Williams–Landel–Ferry model and Arrhenius model using time–temperature superposition principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bikiaris, D.: Microstructure and properties of polypropylene carbon nanotube nanocomposites. Materials 3, 2884–2946 (2010)

    Article  Google Scholar 

  2. Szpieg, M., Giannadakis, K., Varna, J.: Time dependent nonlinear behavior of recycled polypropylene in high tensile stress loading. J. Thermoplast. Compos. Mater. 24, 625–652 (2011)

    Article  Google Scholar 

  3. Lou, Y.C., Schapery, R.A.: Viscoelastic characterization of a nonlinear fiber reinforced plastic. J. Compos. Mater. 5, 208–234 (1971)

    Article  Google Scholar 

  4. Megnis, M., Varna, J., Allen, D.H., Holmberg, A.: Micromechanical modeling of viscoelastic response of GMT composite. J. Compos. Mater. 35(10), 849–882 (2001)

    Article  Google Scholar 

  5. Tserpes, K.I., Chanteli, A., Pantelakis, S.: Mechanical and nanomechanical properties of MWCNT/PP nanocomposite. Dev. Fract. Fatigue Assess. Mater. Struct. 46, 73–83 (2018)

    Google Scholar 

  6. Chanteli, A., Tserpes, K.I.: Finite element modeling of carbon nanotube agglomerates in polymers. Compos. Struct. 132, 1141–1148 (2015)

    Article  Google Scholar 

  7. Pegel, S., Potschke, P., Villmow, T., Stoyan, D., Heinrich, G.: Spatial statistics of carbon nanotube polymer composites. Polymer 5, 2123–2132 (2009)

    Article  Google Scholar 

  8. Li, C., Pang, X.J., Qu, M.J., Jhang, Q.T., Wang, B., Zhang, B.L.: Fabrication and characterization of polycarbonate/carbon nanotubes composites. Compos. Part A 37, 1485–1489 (2005)

    Google Scholar 

  9. Khare, V., Srivastava, S., Kamle, S., Kamath, G.M.: Effect of filler functionalization on the thermomechanical behavior of polypropylene nanocomposites. Procedia Struct. Integr. 14, 215–225 (2019)

    Article  Google Scholar 

  10. Zapas, L.J., Crissman, J.M.: Creep and recovery behavior of ultra high molecular weight polyethylene in the region of small uniaxial deformations. Polymer 25(1), 57–62 (1984)

    Article  Google Scholar 

  11. Roylance, D.: Engineering viscoelasticity. Mechanics of materials course, MIT3 11F99 visco (2001)

  12. Christensen, R.M.: Theory of Viscoelasticity, 2nd edn. Academic Press, New York (1982)

    Google Scholar 

  13. Papanicolaou, G.C., Zaoutsos, S.P.: Viscoelastic Constitutive Modeling of Creep and Stress Relaxation in Polymers and Polymer Matrix Composites. Woodhead, Sawston (2011)

    Book  Google Scholar 

  14. Tuttle, M.E., Brinson, H.F.: Prediction of the long term creep compliance of general composite laminates. Exp. Mech. 26, 89–102 (1985)

    Article  Google Scholar 

  15. Schapery, R.A.: Nonlinear viscoelastic solids. Int. J. Solids Struct. 37, 359–366 (2000)

    Article  MathSciNet  Google Scholar 

  16. Schapery, R.A.: A theory of nonlinear thermoviscoelasticity based on irreversible thermodynamics. In: The Fifth National Congress of Applied Mechanics (1966)

  17. Jia, Y., Peng, K., Gong, X.L., Zhang, Z.: Creep and recovery of polypropylene/carbon nanotube composites. Int. J. Plast. 27, 1239–1251 (2011)

    Article  Google Scholar 

  18. Papanicolaou, G.C., Xepapadaki, A.G., Pavlopoulou, S., Zaoutsos, S.P.: On the investigation of the stress threshold from linear to nonlinear viscoelastic behaviour of polymer matrix particulate composites. Mech. Time Depend. Mater. 13, 261–274 (2009)

    Article  Google Scholar 

  19. Schapery, R.A.: An engineering theory of nonlinear viscoelasticity with applications. Int. J. Solid Struct. 2, 407 (1966)

    Article  Google Scholar 

  20. Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9, 295 (1969)

    Article  Google Scholar 

  21. Kshitish, A.P.: Linear and nonlinear viscoelastic characterization of proton exchange membranes and stress modeling for fuel cell application. Doctor of Philosophy thesis (2009)

  22. Ikeda, M., Aniya, M.: Bond strength coordination number fluctuation model of viscosity: an alternative model for the Vogel–Fulcher–Tammann equation and an application to bulk metallic glass forming liquids. Materials 3, 5246–5262 (2010)

    Article  Google Scholar 

  23. Haj-ali, R.M., Muliana, A.H.: Numerical finite element formulation of the Schapery nonlinear viscoelastic material model. Int. J. Numer. Methods Eng. 59, 25–45 (2004)

    Article  Google Scholar 

  24. Castillo, E.D., Basanez, L., Gil, E.: Modeling nonlinear viscoelastic behavior under large deformations. Int. J. Nonlinear Mech. 57, 154–162 (2013)

    Article  Google Scholar 

  25. Holmes, D.W., Loughran, J.G., Suehreke, H.: Constitutive model for large strain deformation of semicrystalline polymers. Mech. Time Depend. Mater. 10, 281–313 (2007)

    Article  Google Scholar 

  26. Marklund, E., Varna, J., Wallstorm, L.: Nonlinear viscoelasticity and viscoplasticity of flax/polypropylene composites. J. Eng. Mater. Technol. 128(4), 527–536 (2006)

    Article  Google Scholar 

  27. Lourakis, M.: Levenberg–Marquardt nonlinear least squares algorithms in c/c++. Technical report. http://users.ics.forth.gr/ lourakis/levmar/ (2008)

  28. Shapery, R.A.: Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech. Time Depend. Mater. 1, 209–240 (1997)

    Article  Google Scholar 

  29. Arvanitakis, A.I.: A constitutive level-set model for shape memory polymers and shape memory polymeric composites. Arch. Appl. Mech. 89, 1939–1951 (2019)

    Article  Google Scholar 

  30. Yang, Z., Wu, P., Liu, W.: Time-dependent behavior of laminated functionally graded beams bonded by viscoelastic interlayer based on the elasticity theory. Arch. Appl. Mech. 90, 1457–1473 (2020)

    Article  Google Scholar 

  31. Begun, A.S., Burenin, A.A., Kovtanyuk, L.V., Lamza, A.O.: On the mechanisms of production of large irreversible strains in materials with elastic, viscous and plastic properties. Arch. Appl. Mech. 90, 829–845 (2020)

    Article  Google Scholar 

  32. Marklund, E., Eitzenberger, J., Varna, J.: Nonlinear viscoelastic viscoplastic material model including stiffness degradation for hemp/lignin composites. Compos. Sci. Technol. 68, 2156–2162 (2008)

    Article  Google Scholar 

  33. Tuttle, M.E., Pasricha, A., Emery, A.F.: The nonlinear viscoelastic–viscoplastic behavior of im7/5260 composites subjected to cyclic loading. J. Compos. Mater. 29(15), 2025–2046 (1995)

    Article  Google Scholar 

  34. Pasricha, A., Dillard, D.A., Tuttle, M.E.: Effect of physical aging and variable stress history on the strain response of polymeric composites. Compos. Sci. Technol. 57(9–10), 1271–1279 (1997)

    Article  Google Scholar 

  35. Khare, V., Kamle, S.: Development of master curves for nonlinear viscoelastic behaviour of nanofiller-reinforced composites. Int. J. Adv. Eng. Sci. Appl. Math. (2020). https://doi.org/10.1007/s12572-020-00270-w

    Article  MathSciNet  Google Scholar 

  36. Metravib. DMA 100+ Dynatest and Multitest User manual. Metravib (2009)

  37. Zare, Y., Park, S.P., Rhee, K.Y.: Analysis of complex viscosity and shear thinning behavior in poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes biosensor based on Carreau-Yasuda model. Results Phys. 13, 102245 (2019)

    Article  Google Scholar 

  38. Cheng, H.K.F., Chong, M.F., Liu, E., Zhou, K., Li, L.: Thermal decomposition kinetics of multiwalled carbon nanotube polypropylene nanocomposites. J. Therm. Anal. Calorim. 117, 63–71 (2014)

    Article  Google Scholar 

  39. Patti, A., Barretta, R., Marotti, F., de Sciarra, G., Mensitieri, C.Menna, Russo, P.: Flexural properties of multi-wall carbon nanotube polypropylene composites: experimental investigation and nonlocal modeling. Compos. Struct. 131, 282–9 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to Department of Material science and Engineering for providing FESEM facility and Department of Aerospace engineering for DMA and TGA facilities. Authors gratefully acknowledge Mr. Lavendra singh at structures laboratory for his valuable suggestion during dynamic experiments. Financial assistance from MHRD, New Delhi, is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Khare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khare, V., Kamle, S. Effect of temperature and filler volume fraction on the creep and recovery behaviour of MWCNT–COOH–reinforced polypropylene films. Arch Appl Mech 91, 979–995 (2021). https://doi.org/10.1007/s00419-020-01800-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01800-5

Keywords

Navigation