Skip to main content
Log in

Hydrodynamic Diameter of Silver Nanoparticles in Solutions of Nonionic Surfactants

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Physicochemical characteristics of silver nanoparticles with known sizes are studied, depending on the concentration of nonionic surfactants and the concentration of the metal. Surfactants are used that form micelles of different sizes and different intensities of light scattering. It is shown that the surface tension and adhesion properties of solutions of nonionic surfactants are determined by the solvent in ranges of concentration lower than 1 mol/L. An approach based on spectrophotometry and viscosimetry is proposed that allows determination of the most likely reasons for discrepancies in the hydrodynamic diameter of nanoparticles in solutions of nonionic surfactants and the actual diameter of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. Calvert, Chem. Mater. 13, 3299 (2001).

    Article  CAS  Google Scholar 

  2. R. A. Hayes and B. J. Feenstra, Nature (London, U.K.) 425, 383 (2003).

    Article  CAS  Google Scholar 

  3. M. J. Lawrence and G. D. Rees, Adv. Drug Deliv. Rev. 45, 89 (2000).

    Article  CAS  Google Scholar 

  4. F. Lopez, G. Cinelli, M. Colella, et al., Biotechnol. Prog. 30, 360 (2014).

    Article  CAS  Google Scholar 

  5. A. Kamyshny, M. Ben-Moshe, S. Aviezer, and S. Magdassi, Macromol. Rapid Commun. 26, 281 (2005).

    Article  CAS  Google Scholar 

  6. A. Rae and D. Hammer-Fritzinger, Solid State Technol. 49 (4), 53 (2006).

    CAS  Google Scholar 

  7. I. Capek, Adv. Colloid Interface Sci. 110, 49 (2004).

    Article  CAS  Google Scholar 

  8. A. Kamyshny and S. Magdassi, Small 10, 3515 (2014).

    Article  CAS  Google Scholar 

  9. M. A. Lopez-Quintela and J. Rivas, J. Colloid Interface Sci. 158, 446 (1993).

    Article  CAS  Google Scholar 

  10. G. D. J. Phillies, Anal. Chem. 62, 1049 (1990).

    Article  Google Scholar 

  11. B. N. Khlebtsov and N. G. Khlebtsov, Colloid. J. 73, 118 (2011).

    Article  CAS  Google Scholar 

  12. A. I. Bulavchenko, V. V. Tatarchuk, O. A. Bulavchenko, and A. T. Arymbaeva, Russ. J. Inorg. Chem. 50, 786 (2005).

    Google Scholar 

  13. A. I. Bulavchenko and P. S. Popovetskii, Russ. J. Phys. Chem. A 86, 999 (2012).

    Article  CAS  Google Scholar 

  14. A. I. Bulavchenko and P. S. Popovetskiy, Langmuir 30, 12729 (2014).

    Article  CAS  Google Scholar 

  15. A. I. Bulavchenko and D. N. Pletnev, J. Phys. Chem. C 112, 16365 (2008).

    Article  CAS  Google Scholar 

  16. A. I. Bulavchenko and P. S. Popovetskiy, Langmuir 26, 736 (2010).

    Article  CAS  Google Scholar 

  17. F. Beunis, F. Strubbe, K. Neyts, and A. R. M. Verschueren, Appl. Phys. Lett. 90, 182103 (2007).

    Article  Google Scholar 

  18. C. Alvarez-Lorenzo, J. L. Gómez-Amoza, R. Martínez-Pacheco, et al., Int. J. Pharm. 180, 91 (1999).

    Article  CAS  Google Scholar 

  19. P. Ruenraroengsak and A. T. Florence, Int. J. Pharm. 298, 361 (2005).

    Article  CAS  Google Scholar 

  20. M. Vassem, G. McKerricher, and A. Shamim, ACS Appl. Mater. Interfaces 8, 177 (2016).

    Article  Google Scholar 

  21. P. Calvert, Chem. Mater. 13, 3299 (2001).

    Article  CAS  Google Scholar 

  22. J. L. van der Minne and P. H. J. Hermanie, J. Colloid Sci. 7, 600 (1952).

    Article  CAS  Google Scholar 

  23. R. W. O’Brien and L. R. White, J. Chem. Soc., Faraday Trans. 2 74, 1607 (1978).

    Article  Google Scholar 

  24. A. V. Delgado, F. Gonzalez-Caballero, R. J. Hunter, et al., J. Colloid Interface Sci. 309, 194 (2007).

    Article  CAS  Google Scholar 

  25. M. P. Pileni, J. Phys. Chem. 97, 6961 (1993).

    Article  CAS  Google Scholar 

  26. A. T. Arymbaeva, N. O. Shaparenko, P. S. Popovetskii, and A. I. Bulavchenko, Russ. J. Inorg. Chem. 62, 1007 (2017).

    Article  CAS  Google Scholar 

  27. P. S. Popovetskii, N. O. Shaparenko, A. T. Arymbaeva, and A. I. Bulavchenko, Colloid. J. 78, 485 (2016).

    Article  Google Scholar 

  28. P. S. Popovetskii and A. I. Bulavchenko, Colloid. J. 78, 196 (2016).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-33-00064 mol-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Popovetskiy.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popovetskiy, P.S., Kolodin, A.N. Hydrodynamic Diameter of Silver Nanoparticles in Solutions of Nonionic Surfactants. Russ. J. Phys. Chem. 94, 2126–2134 (2020). https://doi.org/10.1134/S0036024420100246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420100246

Keywords:

Navigation