Skip to main content
Log in

Upscaled Model for Multicomponent Gas Transport in Porous Media Incorporating Slip Effect

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A two-scale model for multicomponent gas transport in porous media is developed. At the pore-scale, Stefan–Maxwell formulation is used to describe the multi-gas transport together with the mass and momentum conservation equations, whereas on the solid/fluid interface, a slip velocity according to the Kramers–Kistemaker condition is taken into account. The pore-scale equations are then upscaled using a formal homogenization procedure. The macroscopic model shows that the total average velocity is modified by a slip velocity which depends mostly on the diffusive flux of the light gas in the mixture. Application to hydrogen transport in electrochemical devices such as fuel cell, electrochemical hydrogen purifier/compressor, in which considerable contrast of molar mass between the gases occurs, is carried out. As a result, the gas slip effect can modify considerably the gas transport behavior within the porous medium of the devices. This is an important result because the gas transport mechanisms play a crucial role in their efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auriault, J.-L.: Heterogeneous media: Is an equivalent homogeneous description always possible? Int. J. Eng. Sci. 29, 785–795 (1991)

    Article  Google Scholar 

  • Auriault, J.-L., Lewandowska, J.: Non-linear diffusion in porous media. C. R. Acad. Sci. Paris 324, 293–298 (1997). Série IIb

    Article  Google Scholar 

  • Auriault, J.-L., Boutin, C., Geindreau, C.: Homogenization of Coupled Phenomena in Heterogenous Media. Wiley, New York (2009)

    Book  Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, Second Edition, Chapitre 24 (2002)

  • Brandon, N.P., Brett, D.J.: Engineering porous materials for fuel cell applications. Philos. Trans. R. Soc. A 364, 147–159 (2006)

    Article  Google Scholar 

  • Cercignani, C.: The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, vol. 67. Springer, Berlin (1988)

    Book  Google Scholar 

  • Chapman, S., Cooling, T.G.: The Mathematical Theory of Non-uniform Gases. University Press, Cambridge (1970)

    Google Scholar 

  • Curtiss, C.F., Bird, R.B.: Multicomponent diffusion. Ind. Eng. Chem. Res. 38, 2515–2522 (1999)

    Article  Google Scholar 

  • Curtiss, C.F., Bird, R.B.: Additions and corrections. Ind. Eng. Chem. Res. 40, 1791 (2001)

    Article  Google Scholar 

  • Fu, Y., Jiang, Y., Poizeau, S., Dutta, A., Mohanram, A., Pietras, J.D., Bazant, M.Z.: Multicomponent gas diffusion in porous electrodes. J. Electrochem. Soc. 162, 613–621 (2015)

    Article  Google Scholar 

  • Graham, T.: On the law of the diffusion of gases. Trans. R. Soc. Edinb. 12(1), 222–258 (1834)

    Article  Google Scholar 

  • Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids, Wiley, Chapitre 11, 1954; corrected printing with notes added (1964)

  • Jackson, R.: Transport on Porous Catalysts, Chemical Engineering Monographs, vol. 4. Elsevier, Amsterdam (1977)

    Google Scholar 

  • Kerkhof, P.J.A.M.: A modified Maxwell–Stefan model for transport through inert membranes: the binary friction model. Chem. Eng. J. 64(3), 319–343 (1996)

    Google Scholar 

  • Kerkhof, P.J.A.M., Geboers, M.A.M., Ptasinski, K.J.: On the isothermal binary mass transport in a single pore. Chem. Eng. J. 83, 107–121 (2001)

    Article  Google Scholar 

  • Kerkhof, P.J.A.M., Geboers, M.A.M.: Toward a unified theory of isotropic molecular transport phenomena. AIChE J. 51, 79–121 (2005)

    Article  Google Scholar 

  • Kramers, H.A., Kistemaker, J.: On the slip of a diffusing gas mixture along a wall. Physica 10(8), 699–713 (1943)

    Article  Google Scholar 

  • Lasseux, D., Valdes-Parada, F.J., Ochoa Tapia, J.A., Goyeau, B.: A macroscopic model for slightly compressible gas slip-flow in homogeneous porous media. Phys. Fluids 26, 053102 (2014)

    Article  Google Scholar 

  • Mason, E.A., Malinauskas, A.P., Evans, R.B.: Flow and diffusion of gases in porous media. J. Chem. Phys. 46(8), 3199–3216 (1967)

    Article  Google Scholar 

  • Mason, E.A., Malinauskas, A.P.: Gas transport in porous media: the dusty-gas model. Chem. Eng. Monogr. (1983)

  • Maxwell, J.C.: On the stresses in rarefied gases arising from inequalities of temperature. Philos. Trans. R. Soc. Lond. 170, 231–256 (1879)

    Google Scholar 

  • Pisani, L.: Multi-component gas mixture diffusion through porous media: a 1D analytical solution. Int. J. Heat Mass Transf. 51, 650–660 (2008)

    Article  Google Scholar 

  • Quintard, M., Bletzacker, L., Chenu, D., Whitaker, S.: Nonlinear, multicomponent, mass transport in porous media. Chem. Eng. Sci. 61, 2643–2669 (2006)

    Article  Google Scholar 

  • Rohland, B., Eberle, K., Ströbel, R., Scholta, J., Garche, J.: Electrochemical hydrogen compressor. Electrochim. Acta 43, 3841–3846 (1998)

    Article  Google Scholar 

  • Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics. Springer, Berlin (1980)

    Google Scholar 

  • Sdanghi, G., Dillet, J., Didierjean, S., Fierro, V., Maranzana, G.: Feasibility of hydrogen compression in an electrochemical system: focus on water transport mechanisms. Fuel Cells 20, 370–380 (2019)

    Article  Google Scholar 

  • Skjetne, E., Auriault, J.-L.: Homogeneization of Wall-slip gas flow through porous media. Transp. Porous Med. 36, 293–306 (1999)

    Article  Google Scholar 

  • Young, J.B., Todd, B.: Modelling of multi-component gas flows in capillaries and porous solids. Int. J. Heat Mass Transf. 48, 5338–5353 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Le.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Kramers and Kistemaker Relation

Consider a multicomponent gas mixture of N species. The velocity of a molecule of the component i is sum of a mass weighted velocity (\(v_{i}\)) and of a random velocity (\(C_{i}\)) obeying a Maxwell–Boltzmann distribution (\(1 \le i \le N\)) (Chapman 1970; Cercignani 1988). Each mole of species i brings a momentum parallel to the wall \(M_{i} v_{i}^{t}\) where \( v_{i}^{t}\) is the tangential velocity component (parallel to the wall). The molar flux of i molecules impacting the wall per surface and unit time is given for a Maxwell–Boltzmann velocity distribution by \(c_{i} \overline{C}_{i}/4\) where \(c_{i}\) is the molar concentration and \(\overline{C}_{i}\) the average velocity magnitude of the Maxwell–Boltzmann distribution for species i. Therefore, the tangential momentum transferred to the wall per unit area and per unit time is given by (Maxwell 1879; Jackson 1977)

$$\begin{aligned} \displaystyle \frac{1}{4} \sum _{i} \left. c_{i} \overline{C}_{i} M_{i} v_{i}^{t}\right| _{y = \alpha _{i} \ell _{i}} = \displaystyle \frac{1}{4} \sum _{i} \left. \rho _{i} \overline{C}_{i} v_{i}^{t}\right| _{y = \alpha _{i} \ell _{i}} \end{aligned}$$
(68)

The subscript \(y = \alpha _{i} \ell _{i}\), where y is the distance from the wall, indicates that the quantities must be evaluated at a distance \(\alpha _{i} \ell _{i}\) of the wall (where \(\ell _{i}\) is the mean free path for species i and \(\alpha _{i} \simeq 1\); in Bird et al. (2002), \(\alpha _{i} = 2/3\)) corresponding to the mean position of the last intermolecular collision of the molecules i before their contact with the wall.

Let us consider a diffuse reflection of the molecules at the wall. The previous quantity in (68) represents the net rate of momentum transfer to the wall that can be identified by the shear stress

$$\begin{aligned} \displaystyle \frac{1}{4} \sum _{i} \left. \rho _{i} \overline{C}_{i} v_{i}^{t}\right| _{y_{i}=\alpha _{i} \ell _{i}} = \mu \left. \displaystyle \frac{\mathrm{d}v^{t}}{\mathrm{d}y} \right| _{y=0} \end{aligned}$$
(69)

where \(\mu \) is the dynamic viscosity of the fluid defined as (see Bird et al. 2002)

$$\begin{aligned} \mu = \displaystyle \frac{1}{2} \sum _{i} \rho _{i} \overline{C}_{i} \alpha _{i} \lambda _{i} \end{aligned}$$
(70)

Hence,

$$\begin{aligned} \displaystyle \frac{1}{4} \sum _{i} \left. \rho _{i} \overline{C}_{i} v_{i}^{t}\right| _{y_{i} = \alpha _{i}\ell _{i}} = \displaystyle \frac{1}{2}\sum _{i} \rho _{i} \overline{C}_{i} \alpha _{i} \lambda _{i} \left. \displaystyle \frac{\mathrm{d}v^{t}}{\mathrm{d}y} \right| _{y=0} \end{aligned}$$
(71)

A Taylor development of the left-hand side of the previous equation leads to

$$\begin{aligned} \displaystyle \frac{1}{4} \left[ \sum _{i} \rho _{i} \overline{C}_{i} \left( \left. v_{i}^{t}\right| _{y =0} + \alpha _{i} \lambda _{i} \left. \displaystyle \frac{\mathrm{d}v_{i}^{t}}{\mathrm{d}y}\right| _{y=0} \right) \right] = \displaystyle \frac{1}{2}\sum _{i} \rho _{i} \overline{C}_{i} \alpha _{i} \lambda _{i} \left. \displaystyle \frac{\mathrm{d}v^{t}}{\ d y}\right| _{y=0} \end{aligned}$$
(72)

or

$$\begin{aligned} \displaystyle \frac{1}{4} \sum _{i} \rho _{i} \overline{C}_{i} \left. v_{i}^{t}\right| _{y =0} = \displaystyle \frac{1}{4} \left[ \sum _{i} \rho _{i} \overline{C}_{i} \alpha _{i} \lambda _{i} \left( 2\left. \displaystyle \frac{\mathrm{d}v^{t}}{\ d y}\right| _{y=0} - \left. \displaystyle \frac{\mathrm{d}v_{i}^{t}}{\mathrm{d}y}\right| _{y=0} \right) \right] \end{aligned}$$
(73)

An evaluation of the different orders of magnitude leads to

$$\begin{aligned} \sum _{i} \left. \rho _{i} \overline{C}_{i} v_{i}^{t}\right| _{y=0} \simeq \left( \sum _{i} \rho _{i} \overline{C}_{i} \alpha _{i} \lambda _{i} \right) \left. \displaystyle \frac{\mathrm{d}v^{t}}{\mathrm{d}y}\right| _{y=0} = \mathscr {O}\left[ \left( \sum _{i} \rho _{i} \overline{C}_{i} \alpha _{i} \right) v_{m} \displaystyle \frac{\lambda }{L} \right] \end{aligned}$$
(74)

where \(v_{m}\) is a macroscopic reference velocity, L a macroscopic length scale corresponding to the pore size and \(\lambda = \max {(\lambda _{i})}\). When \(\lambda \ll L\), a good approximation is

$$\begin{aligned} \sum _{i} \left. \rho _{i} \overline{C}_{i} v_{i}^{t}\right| _{y=0} = 0 \end{aligned}$$
(75)

As \(\overline{C}_{i} = \displaystyle \frac{A}{\sqrt{M_{i}}}\) where A is a constant, \(\rho _{i} = \omega _{i} \rho \) and using velocity decomposition \(v_{i}^{t} = v + u_{i}\), it comes

$$\begin{aligned} \sum _{i} \displaystyle \frac{\omega _{i}}{\sqrt{M_{i}}} \left. \left( v + u_{i}\right) \right| _{y=0} = 0 \end{aligned}$$
(76)

leading to

$$\begin{aligned} \left. v \right| _{y=0} = u_{s} = - \displaystyle \frac{\displaystyle \sum \nolimits _{i} \omega _{i} \left. M_{i}^{-1/2} u_{i} \right| _{y=0}}{\displaystyle \sum \nolimits _{i} \omega _{i} M_{i}^{-1/2}} = - \displaystyle \frac{\displaystyle \sum \nolimits _{i} \omega _{i} \left. M_{i}^{-1/2} (v_{i}^t - v) \right| _{y=0}}{\displaystyle \sum \nolimits _{i} \omega _{i} M_{i}^{-1/2} } \end{aligned}$$
(77)

which is known as the Kramers–Kistemaker slip velocity (Kramers and Kistemaker 1943).

B Graham’s Law for a Binary Gas Mixture

In the simple case of a binary ideal gas mixture with two components A and B, the Stefan–Maxwell relation is written as

$$\begin{aligned} {{\varvec{\nabla }}}x_{A} + \left( x_{A} - \omega _{A} \right) \displaystyle \frac{{{\varvec{\nabla }}}p}{p} = x_{A} x_{B} \mathbf {D}_{AB}^{-1} \left( \displaystyle \frac{\langle \mathbf {j}_{B} \rangle }{\rho _{B}} - \displaystyle \frac{\langle \mathbf {j}_{A} \rangle }{\rho _{A}} \right) \end{aligned}$$
(78)

Inverting this relation with the condition \(\langle \mathbf {j}_{A} \rangle + \langle \mathbf {j}_{B} \rangle = 0\) yields:

$$\begin{aligned} \left\langle \mathbf {j}_{A} \right\rangle = - \left\langle \mathbf {j}_{B} \right\rangle = - \rho \mathbf {D}_{AB} \left[ {{\varvec{\nabla }}}\omega _{A} + \displaystyle \frac{M_{A} M_{B}}{M^{2}} \left( x_{A} - \omega _{A} \right) \displaystyle \frac{{{\varvec{\nabla }}}p}{p} \right] \end{aligned}$$
(79)

The Darcy velocity is given by

$$\begin{aligned} \left\langle \mathbf {v}\right\rangle = - \displaystyle \frac{\mathbf {K}}{\mu } \cdot {{\varvec{\nabla }}}p - \displaystyle \frac{1}{\rho } \displaystyle \frac{M_{A}^{-1/2} - M_{B}^{-1/2}}{\omega _{A} M_{A}^{-1/2} + \omega _{B} M_{B}^{-1/2}} \left\langle \mathbf {j}_{A}\right\rangle \end{aligned}$$
(80)

The transport equation can be put into the form

$$\begin{aligned} n_{f} \rho \displaystyle \frac{\partial \omega _{A}}{\partial t} = - {{\varvec{\nabla }}}\cdot \langle \mathbf {n}_{A} \rangle \end{aligned}$$
(81)

where the mass flux \(\langle \mathbf {n}_{A} \rangle \) in the laboratory frame is given by

$$\begin{aligned} \left\langle \mathbf {n}_{A} \right\rangle= & {} \omega _{A} \rho \langle \mathbf {v}\rangle + \left\langle \mathbf {j}_{A}\right\rangle \nonumber \\= & {} - \rho \omega _{A} \left( \displaystyle \frac{\mathbf {K}}{\mu } + \displaystyle \frac{\sqrt{M_{A}}}{\omega _{A} \sqrt{M_{B}} + \omega _{B} \sqrt{M_{A}}} \displaystyle \frac{M_{A} - M_{B}}{M} \displaystyle \frac{\mathbf {D}_{AB}}{p} \right) \cdot {{\varvec{\nabla }}}p \nonumber \\&- \displaystyle \frac{\sqrt{M_{A}}}{\omega _{A} \sqrt{M_{B}} + \omega _{B} \sqrt{M_{A}}} \rho \mathbf {D}_{AB} \cdot {{\varvec{\nabla }}}\omega _{A} \end{aligned}$$
(82)

An equivalent relation can be written in terms of molar flux \(\langle \mathbf {N}_{A} \rangle \) and molar fraction \(x_{A}\)

$$\begin{aligned} \left\langle \mathbf {N}_{A} \right\rangle = \displaystyle \frac{\left\langle \mathbf {n}_{A} \right\rangle }{M_{A}}= & {} - c \, x_{A} \left( \displaystyle \frac{\mathbf {K}}{\mu } + \displaystyle \frac{M_{A} - M_{B}}{\sqrt{M_{B}}} \displaystyle \frac{1}{x_{A} \sqrt{M_{A}} + x_{B} \sqrt{M_{B}}} \displaystyle \frac{\mathbf {D}_{AB}}{p} \right) \cdot {{\varvec{\nabla }}}p \nonumber \\&- \displaystyle \frac{\sqrt{M_{B}}}{x_{A} \sqrt{M_{A}} + x_{B} \sqrt{M_{B}}} c \mathbf {D}_{AB} \cdot {{\varvec{\nabla }}}x_{A} \end{aligned}$$
(83)

where c is the total molar concentration. Permuting A and B with \(\mathbf {D}_{AB}=\mathbf {D}_{BA}\), a similar relation can be obtained for B. Without pressure gradient, the Graham law is recovered:

$$\begin{aligned} \sqrt{M_{A}} \, \left\langle \mathbf {N}_{A} \right\rangle + \sqrt{M_{B}} \, \left\langle \mathbf {N}_{B} \right\rangle = 0 \end{aligned}$$
(84)

In order to compare the preceding results with the case without slip effects, the standard Fick relations are recalled. Without slip effect, it yields

$$\begin{aligned} \left\langle \mathbf {n}_{A} \right\rangle= & {} - \omega _{A} \rho \displaystyle \frac{\mathbf {K}}{\mu } \cdot {{\varvec{\nabla }}}p - \rho \mathbf {D}_{AB} \cdot \left( {{\varvec{\nabla }}}\omega _{A} + \omega _{A} \omega _{B} \displaystyle \frac{M_{B} - M_{A}}{M} \displaystyle \frac{{{\varvec{\nabla }}}p}{p}\right) \end{aligned}$$
(85)
$$\begin{aligned} \left\langle \mathbf {N}_{A} \right\rangle= & {} - x_{A} c \left( \displaystyle \frac{\mathbf {K}}{\mu } + x_{B} \displaystyle \frac{M_{B} (M_{B} - M_{A})}{M^{2}} \displaystyle \frac{\mathbf {D}_{AB}}{p} \right) \cdot {{\varvec{\nabla }}}p - c \displaystyle \frac{M_{B}}{M} \mathbf {D}_{AB} \cdot {{\varvec{\nabla }}}x_{A} \end{aligned}$$
(86)

and in the absence of pressure gradient, the Fick’s law is recovered

$$\begin{aligned} M_{A} \left\langle \mathbf {N}_{A} \right\rangle + M_{B} \left\langle \mathbf {N}_{B} \right\rangle = 0 \end{aligned}$$
(87)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyne, C., Le, T.D. & Maranzana, G. Upscaled Model for Multicomponent Gas Transport in Porous Media Incorporating Slip Effect. Transp Porous Med 135, 309–330 (2020). https://doi.org/10.1007/s11242-020-01478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01478-x

Keywords

Navigation