Skip to main content

Advertisement

Log in

Cereblon Promotes the Ubiquitination and Proteasomal Degradation of Interleukin Enhancer-Binding Factor 2

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Interleukin enhancer-binding factor 2 (ILF2) forms a heterodimer with interleukin enhancer-binding factor 3 (ILF3) via double-stranded RNA-binding motif and zinc finger associated domain and thus regulates gene expression and cancer cell growth. However, how ILF2 is degraded in cells remains elusive. In this work, using stable isotope labeling by amino acids in cell culture (SILAC) quantitative proteomics, we find that ILF2 is downregulated in cells expressing cereblon (CRBN). Using affinity purification and immunoblotting analysis, we demonstrate that CRBN interacts with ILF2 and functions as a substrate receptor of the cullin-4 RING E3 ligase complex. Biochemical experiments disclose that CRBN expression reduces ILF2 protein level and this reduction is diminished when the proteasome is inhibited. Upon protein synthesis inhibition, the degradation of ILF2 is enhanced by CRBN. Moreover, CRBN promotes the ubiquitination of ILF2 and thus results in the ubiquitin-mediated proteasomal degradation. Analyses of previously identified post-translational modification sites and the crystal structure of ILF2 discover the potential ubiquitination sites on ILF2. Through mutagenesis and biochemical experiments, we further reveal that the K45R mutation completely abolishes the effect of CRBN on ILF2, suggesting that this is the key residue responsible for its ubiquitination. Taken together, we identify an E3 ligase that regulates ILF2 and uncover a molecular pathway for its degradation. This work might be helpful to elucidate the molecular mechanism by which CRBN regulates diverse cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Satoh M, Shaheen VM, Kao PN, Okano T, Shaw M, Yoshida H, Richards HB, Reeves WH (1999) Autoantibodies define a family of proteins with conserved double-stranded RNA-binding domains as well as DNA binding activity. J Biol Chem 274:34598–34604

    CAS  PubMed  Google Scholar 

  2. Ting NS, Kao PN, Chan DW, Lintott LG, Lees-Miller SP (1998) DNA-dependent protein kinase interacts with antigen receptor response element binding proteins NF90 and NF45. J Biol Chem 273:2136–2145

    CAS  PubMed  Google Scholar 

  3. Jin Z, Xu L, Zhang L, Zhao M, Li D, Ye L, Ma Y, Ren S, Yu H, Wang D, Liang C, Chen B (2018) Interleukin enhancer binding factor 2 is a prognostic biomarker for breast cancer that also predicts neoadjuvant chemotherapy responses. Am J Transl Res 10:1677–1689

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yin ZH, Jiang XW, Shi WB, Gui QL, Yu DF (2017) Expression and clinical significance of ILF2 in gastric cancer. Dis Mark 2017:4387081

    Google Scholar 

  5. Du H, Le Y, Sun F, Li K, Xu Y (2019) ILF2 directly binds and stabilizes CREB to stimulate malignant phenotypes of liver cancer cells. Anal Cell Pathol 2019:1575031

    Google Scholar 

  6. Li N, Liu T, Li H, Zhang L, Chu L, Meng Q, Qiao Q, Han W, Zhang J, Guo M, Zhao J (2019) ILF2 promotes anchorage independence through direct regulation of PTEN. Oncol Lett 18:1689–1696

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao G, Shi L, Qiu D, Hu H, Kao PN (2005) NF45/ILF2 tissue expression, promoter analysis, and interleukin-2 transactivating function. Exp Cell Res 305:312–323

    CAS  PubMed  Google Scholar 

  8. Cheng S, Jiang X, Ding C, Du C, Owusu-Ansah KG, Weng X, Hu W, Peng C, Lv Z, Tong R, Xiao H, Xie H, Zhou L, Wu J, Zheng S (2016) Expression and critical role of interleukin enhancer binding factor 2 in hepatocellular carcinoma. Int J Mol Sci 17:1373

    PubMed Central  Google Scholar 

  9. Shamanna RA, Hoque M, Pe’ery T, Mathews MB (2013) Induction of p53, p21 and apoptosis by silencing the NF90/NF45 complex in human papilloma virus-transformed cervical carcinoma cells. Oncogene 32:5176–5185

    CAS  PubMed  Google Scholar 

  10. Ni T, Mao G, Xue Q, Liu Y, Chen B, Cui X, Lv L, Jia L, Wang Y, Ji L (2015) Upregulated expression of ILF2 in non-small cell lung cancer is associated with tumor cell proliferation and poor prognosis. J Mol Histol 46:325–335

    CAS  PubMed  Google Scholar 

  11. Wan C, Gong C, Ji L, Liu X, Wang Y, Wang L, Shao M, Yang L, Fan S, Xiao Y, Wang X, Li M, Zhou G, Zhang Y (2015) NF45 overexpression is associated with poor prognosis and enhanced cell proliferation of pancreatic ductal adenocarcinoma. Mol Cell Biochem 410:25–35

    CAS  PubMed  Google Scholar 

  12. Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61:761–807

    CAS  PubMed  Google Scholar 

  13. Wang R, Wang G (2019) Protein modification and autophagy activation. Adv Exp Med Biol 1206:237–259

    CAS  PubMed  Google Scholar 

  14. Xu G, Jaffrey SR (2013) Comprehensive profiling of protein ubiquitination for drug discovery. Curr Pharm Des 19:3315–3328

    CAS  PubMed  Google Scholar 

  15. Pan L, Liu J, Li Y (2019) Structural basis of autophagy regulatory proteins. Adv Exp Med Biol 1206:287–326

    CAS  PubMed  Google Scholar 

  16. Lin JX, Xie XS, Weng XF, Qiu SL, Yoon C, Lian NZ, Xie JW, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Yang YH, Huang CM, Zheng CH, Li P (2019) UFM1 suppresses invasive activities of gastric cancer cells by attenuating the expression of PDK1 through PI3K/AKT signaling. J Exp Clin Cancer Res 38:410

    PubMed  PubMed Central  Google Scholar 

  17. Martini-Stoica H, Xu Y, Ballabio A, Zheng H (2016) The autophagy-lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neurosci 39:221–234

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo F, Liu X, Cai H, Le W (2018) Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol 28:3–13

    CAS  PubMed  Google Scholar 

  19. Sheng R, Qin ZH (2015) The divergent roles of autophagy in ischemia and preconditioning. Acta Pharmacol Sin 36:411–420

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ardley HC, Robinson PA (2005) E3 ubiquitin ligases. Essays Biochem 41:15–30

    CAS  PubMed  Google Scholar 

  21. Kwon E, Li X, Deng Y, Chang HW, Kim DY (2019) AMPK is down-regulated by the CRL4A-CRBN axis through the polyubiquitination of AMPKα isoforms. FASEB J 33:6539–6550

    CAS  PubMed  Google Scholar 

  22. Chen Y-A, Peng Y-J, Hu M-C, Huang J-J, Chien Y-C, Wu J-T, Chen T-Y, Tang C-Y (2015) The Cullin 4A/B-DDB1-cereblon E3 ubiquitin ligase complex mediates the degradation of CLC-1 chloride channels. Sci Rep 5:10667

    PubMed  PubMed Central  Google Scholar 

  23. Yang J, Huang M, Zhou L, He X, Jiang X, Zhang Y, Xu G (2018) Cereblon suppresses the lipopolysaccharide-induced inflammatory response by promoting the ubiquitination and degradation of c-Jun. J Biol Chem 293:10141–10157

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu J, Ye J, Zou X, Xu Z, Feng Y, Zou X, Chen Z, Li Y, Cang Y (2014) CRL4ACRBN E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis. Nat Commun 5:3924

    CAS  PubMed  Google Scholar 

  25. Fischer ES, Bohm K, Lydeard JR, Yang H, Stadler MB, Cavadini S, Nagel J, Serluca F, Acker V, Lingaraju GM, Tichkule RB, Schebesta M, Forrester WC, Schirle M, Hassiepen U, Ottl J, Hild M, Beckwith RE, Harper JW, Jenkins JL, Thoma NH (2014) Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512:49–53

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X, Ciarlo C, Hartman E, Munshi N, Schenone M, Schreiber SL, Carr SA, Ebert BL (2014) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343:301–305

    PubMed  Google Scholar 

  27. Petzold G, Fischer ES, Thoma NH (2016) Structural basis of lenalidomide-induced CK1a degradation by the CRL4CRBN ubiquitin ligase. Nature 532:127–130

    CAS  PubMed  Google Scholar 

  28. Krönke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, Chamberlain PP, Mani DR, Man HW, Gandhi AK, Svinkina T, Schneider RK, McConkey M, Järås M, Griffiths E, Wetzler M, Bullinger L, Cathers BE, Carr SA, Chopra R, Ebert BL (2015) Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523:183–188

    PubMed  PubMed Central  Google Scholar 

  29. Nguyen TV, Lee JE, Sweredoski MJ, Yang SJ, Jeon SJ, Harrison JS, Yim JH, Lee SG, Handa H, Kuhlman B, Jeong JS, Reitsma JM, Park CS, Hess S, Deshaies RJ (2016) Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon. Mol Cell 61:809–820

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Matyskiela ME, Lu G, Ito T, Pagarigan B, Lu CC, Miller K, Fang W, Wang NY, Nguyen D, Houston J, Carmel G, Tran T, Riley M, Nosaka L, Lander GC, Gaidarova S, Xu S, Ruchelman AL, Handa H, Carmichael J, Daniel TO, Cathers BE, Lopez-Girona A, Chamberlain PP (2016) A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. Nature 535:252–257

    CAS  PubMed  Google Scholar 

  31. Asatsuma-Okumura T, Ando H, De Simone M, Yamamoto J, Sato T, Shimizu N, Asakawa K, Yamaguchi Y, Ito T, Guerrini L, Handa H (2019) p63 is a cereblon substrate involved in thalidomide teratogenicity. Nat Chem Biol 15:1077–1084

    CAS  PubMed  Google Scholar 

  32. Donovan KA, An J, Nowak RP, Yuan JC, Fink EC, Berry BC, Ebert BL, Fischer ES (2018) Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. Elife 7:e38430

    PubMed  PubMed Central  Google Scholar 

  33. Matyskiela ME, Couto S, Zheng X, Lu G, Hui J, Stamp K, Drew C, Ren Y, Wang M, Carpenter A, Lee CW, Clayton T, Fang W, Lu CC, Riley M, Abdubek P, Blease K, Hartke J, Kumar G, Vessey R, Rolfe M, Hamann LG, Chamberlain PP (2018) SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat Chem Biol 14:981–987

    CAS  PubMed  Google Scholar 

  34. Matyskiela ME, Clayton T, Zheng X, Mayne C, Tran E, Carpenter A, Pagarigan B, McDonald J, Rolfe M, Hamann LG, Lu G, Chamberlain PP (2020) Crystal structure of the SALL4-pomalidomide-cereblon-DDB1 complex. Nat Struct Mol Biol 27:319–322

    CAS  PubMed  Google Scholar 

  35. Xu G, Jiang X, Jaffrey SR (2013) A mental retardation-linked nonsense mutation in cereblon is rescued by proteasome inhibition. J Biol Chem 288:29573–29585

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tateno S, Iida M, Fujii S, Suwa T, Katayama M, Tokuyama H, Yamamoto J, Ito T, Sakamoto S, Handa H, Yamaguchi Y (2020) Genome-wide screening reveals a role for subcellular localization of CRBN in the anti-myeloma activity of pomalidomide. Sci Rep 10:4012

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou L, Hao Z, Wang G, Xu G (2018) Cereblon suppresses the formation of pathogenic protein aggregates in a p62-dependent manner. Hum Mol Genet 27:667–678

    CAS  PubMed  Google Scholar 

  38. Zhou L, Xu G (2019) Cereblon attenuates DNA damage-induced apoptosis by regulating the transcription-independent function of p53. Cell Death Dis 10:69

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu G, Zhai H, Narayan M, McLafferty FW, Scheraga HA (2004) Simultaneous characterization of the reductive unfolding pathways of RNase B isoforms by top-down mass spectrometry. Chem Biol 11:517–524

    CAS  PubMed  Google Scholar 

  40. Xu G, Narayan M, Scheraga HA (2005) The oxidative folding rate of bovine pancreatic ribonuclease is enhanced by a covalently attached oligosaccharide. Biochemistry 44:9817–9823

    CAS  PubMed  Google Scholar 

  41. Jayaprakash NG, Surolia A (2017) Role of glycosylation in nucleating protein folding and stability. Biochem J 474:2333–2347

    CAS  PubMed  Google Scholar 

  42. Liu Y, Tavana O, Gu W (2019) p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol 11:564–577

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Udeshi ND, Mani DC, Satpathy S, Fereshetian S, Gasser JA, Svinkina T, Olive ME, Ebert BL, Mertins P, Carr SA (2020) Rapid and deep-scale ubiquitylation profiling for biology and translational research. Nat Commun 11:359

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hou X, Si J, Ren H, Chen D, Wang H, Ying Z, Hu Q, Gao F, Wang G (2015) Parkin represses 6-hydroxydopamine-induced apoptosis via stabilizing scaffold protein p62 in PC12 cells. Acta Pharmacol Sin 36:1300–1307

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660

    CAS  PubMed  Google Scholar 

  46. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    CAS  PubMed  Google Scholar 

  47. Xu G, Shin SB, Jaffrey SR (2009) Global profiling of protease cleavage sites by chemoselective labeling of protein N-termini. Proc Natl Acad Sci USA 106:19310–19315

    CAS  PubMed  Google Scholar 

  48. Duan W, Chen S, Zhang Y, Li D, Wang R, Chen S, Li J, Qiu X, Xu G (2016) Protein C-terminal enzymatic labeling identifies novel caspase cleavages during the apoptosis of multiple myeloma cells induced by kinase inhibition. Proteomics 16:60–69

    CAS  PubMed  Google Scholar 

  49. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520

    CAS  PubMed  Google Scholar 

  50. Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28:868–873

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cui H, Yan Y, Wei J, Hou Z, Huang Y, Huang X, Qin Q (2011) Cloning, characterization, and expression analysis of orange-spotted grouper (Epinephelus coioides) ILF2 gene (EcILF2). Fish Shellfish Immunol 30:378–388

    CAS  PubMed  Google Scholar 

  52. Chamberlain PP, Lopez-Girona A, Miller K, Carmel G, Pagarigan B, Chie-Leon B, Rychak E, Corral LG, Ren YJ, Wang M, Riley M, Delker SL, Ito T, Ando H, Mori T, Hirano Y, Handa H, Hakoshima T, Daniel TO, Cathers BE (2014) Structure of the human cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol 21:803–809

    CAS  PubMed  Google Scholar 

  53. Zhu YX, Braggio E, Shi CX, Bruins LA, Schmidt JE, Van Wier S, Chang XB, Bjorklund CC, Fonseca R, Bergsagel PL, Orlowski RZ, Stewart AK (2011) Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 118:4771–4779

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tao J, Yang J, Xu G (2018) The interacting domains in cereblon differentially modulate the immunomodulatory drug-mediated ubiquitination and degradation of its binding partners. Biochem Biophys Res Commun 507:443–449

    CAS  PubMed  Google Scholar 

  55. Schapira M, Calabrese MF, Bullock AN, Crews CM (2019) Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov 18:949–963

    CAS  PubMed  Google Scholar 

  56. Burslem GM, Crews CM (2020) Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181:102–114

    CAS  PubMed  Google Scholar 

  57. Lu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, Hines J, Winkler JD, Crew AP, Coleman K, Crews CM (2015) Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol 22:755–763

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bai L, Zhou H, Xu R, Zhao Y, Chinnaswamy K, McEachern D, Chen J, Yang CY, Liu Z, Wang M, Liu L, Jiang H, Wen B, Kumar P, Meagher JL, Sun D, Stuckey JA, Wang S (2019) A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 36:498-511.e417

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Walczak CP, Leto DE, Zhang L, Riepe C, Muller RY, DaRosa PA, Ingolia NT, Elias JE, Kopito RR (2019) Ribosomal protein RPL26 is the principal target of UFMylation. Proc Natl Acad Sci USA 116:1299–1308

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2019YFA0802400), National Natural Science Foundation of China (31670833), Talent Program in Six Major Disciplines in Jiangsu Province (SWYY-080), Jiangsu Key Laboratory of Neuropsychiatric Diseases (BM2013003), a project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

GX and ZP conceived the concept; QL, YG, XH, QL, and XJ performed the experiments and analyzed the data. GX and ZP wrote the manuscript and all authors revised the manuscript.

Corresponding authors

Correspondence to Zhongjian Pu or Guoqiang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

In commemoration of Prof. Harold A. Scheraga This work was written to memorialize Harold A. Scheraga of the Baker Laboratory of Chemistry and Chemical Biology, Cornell University for his long-term dedication to scientific research and for fostering hundreds of students and postdocs in experimental and computational biophysics. The last author of this paper, Guoqiang Xu, was trained as a postdoctoral associate in the Scheraga laboratory between 2003 and 2005. It was during his tenure in Prof. Scheraga′s laboratory that he initiated his scientific career in experimental biological sciences. Prof. Scheraga was enthusiastic and persistent about the research in biochemistry and biophysics. He was a critical thinker and always demonstrated to others the perfectness and dedication required to conduct research. These aspects influenced Guoqiang’s scientific career in the long run. Prof. Scheraga’s personality also shaped Guoqiang and sculpted his career development. We will always cherish the memory and exciting moments we had with Prof. Scheraga.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, Q., Gao, Y., Li, Q. et al. Cereblon Promotes the Ubiquitination and Proteasomal Degradation of Interleukin Enhancer-Binding Factor 2. Protein J 39, 411–421 (2020). https://doi.org/10.1007/s10930-020-09918-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09918-9

Keywords

Navigation