Skip to main content

Advertisement

Log in

A Functional Busemann Intersection Inequality

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The Busemann intersection inequality states that if K is a compact domain in \({\mathbb {R}}^n\) then

where \(c(n)>0\) is an explicit constant, with equality if and only if K is an ellipsoid centered at the origin. In this paper, we prove a functional version of the Busemann intersection inequality. We also demonstrate an “equivalent” sharp entropy inequality for dual mixed volumes of functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Busemann, H.: Volume in terms of concurrent cross-sections. Pac. J. Math. 3, 1–12 (1953)

    Article  MathSciNet  Google Scholar 

  2. Cianchi, A., Lutwak, E., Yang, D., Zhang, G.: Affine Moser-Trudinger and Morrey-Sobolev inequalities. Calc. Var. Partial Differ. Equ. 36, 419–436 (2009)

    Article  MathSciNet  Google Scholar 

  3. Gardner, R.J.: The dual Brunn-Minkowski theory for bounded Borel sets: dual affine quermassintegrals and inequalties. Adv. Math. 216, 358–386 (2007)

    Article  MathSciNet  Google Scholar 

  4. Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  5. Gardner, R.J.: A positive answer to the Busemann-Petty problem in three dimensions. Ann. Math. 140, 435–447 (1994)

    Article  MathSciNet  Google Scholar 

  6. Gardner, R.J., Giannopoulos, A.A.: \(p\)-cross-section bodies. Indiana Univ. Math. J. 48, 593–614 (1999)

    Article  MathSciNet  Google Scholar 

  7. Gardner, R.J., Vedel Jensen, E.B., Volčič, A.: Geometric tomography and local stereology. Adv. Appl. Math 30, 397–423 (2003)

    Article  MathSciNet  Google Scholar 

  8. Gardner, R.J., Koldobsky, A., Schlumprecht, T.: An analytic solution to the Busemann-Petty problem on sections of convex bodies. Ann. Math. 149, 691–703 (1999)

    Article  MathSciNet  Google Scholar 

  9. Grinberg, E., Zhang, G.: Convolutions, transforms, and convex bodies. Proc. Lond. Math. Soc. 78, 77–115 (1999)

    Article  MathSciNet  Google Scholar 

  10. Guleryuz, O.G., Lutwak, E., Yang, D., Zhang, G.: Information-theoretic inequalities for contoured probability distributions. IEEE Trans. Inform. Theory 48, 2377–2383 (2002)

    Article  MathSciNet  Google Scholar 

  11. Haberl, C., Schuster, F.E.: General affine \(L_p\) Sobolev inequalities. J. Funct. Anal. 257, 641–658 (2009)

    Article  MathSciNet  Google Scholar 

  12. Haberl, C., Schuster, F.E., Xiao, J.: An asymmetric affine Pólya-Szegö principle. Math. Ann. 352, 517–542 (2012)

    Article  MathSciNet  Google Scholar 

  13. Haddad, J., Jimenez, C., Montenegro, M.: Sharp affine Sobolev type inequalities via the \(L_p\) Busemann-Petty centroid inequality. J. Funct. Anal. 271, 454–473 (2016)

    Article  MathSciNet  Google Scholar 

  14. Haddad, J., Jimenez, C., Silva, L.: An \(L_p\)-functional Busemann-Petty centroid inequality. Int. Math. Res. Notices 392, 1–19 (2020). https://doi.org/10.1093/imrn/rnz392

    Article  Google Scholar 

  15. Koldobsky, A.: Inverse formula for the Blaschke-Lévy representation. Houston J, Math. 23, 95–107 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathemaitcs, vol. 14, 2nd edn. AMS, Providence (2001)

    Google Scholar 

  17. Ludwig, M., Xiao, J., Zhang, G.: Sharp convex Lorentz-Sobolev inequalities. Math. Ann. 350, 169–197 (2011)

    Article  MathSciNet  Google Scholar 

  18. Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)

    Article  MathSciNet  Google Scholar 

  19. Lutwak, E.: On some ellipsoid formulas of Busemann, Furstenberg and Tzkoni, Guggenheimer, and Petty. J. Math. Anal. Appl. 159, 18–26 (1991)

    Article  MathSciNet  Google Scholar 

  20. Lutwak, E., Lv, S., Yang, D., Zhang, G.: Extenstions of Fisher information and Stam’s inequality. IEEE Trans. Inf. Theory 58, 1319–1327 (2012)

    Article  Google Scholar 

  21. Lutwak, E., Yang, D., Zhang, G.: \(L_p\) affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    MATH  Google Scholar 

  22. Lutwak, E., Yang, D., Zhang, G.: Sharp affine \(L_p\) Sobolev inequalities. J. Differ. Geom. 62, 17–38 (2002)

    MATH  Google Scholar 

  23. Lutwak, E., Yang, D., Zhang, G.: Moment-entropy inequalities. Ann. Probab. 32, 757–774 (2004)

    Article  MathSciNet  Google Scholar 

  24. Lutwak, E., Yang, D., Zhang, G.: Optimal Sobolev norms and the \(L_p\) Minkowski problem. Int. Math. Res. Notices 62987, 1–21 (2006)

    Google Scholar 

  25. Nguyen, V.H.: New approach to the affine Pólya-Szegö principle and the stability version of the affine Sobolev inequality. Adv. Math. 302, 1080–1110 (2016)

    Article  MathSciNet  Google Scholar 

  26. Wang, T.: The affine Pólya-Szegö principle: equality cases and stability. J. Funct. Anal. 265, 1728–1748 (2013)

    Article  MathSciNet  Google Scholar 

  27. Xiao, J.: The sharp Sobolev and isoperimetric inequalities split twice. Adv. Math. 211, 417–435 (2007)

    Article  MathSciNet  Google Scholar 

  28. Zhai, Z.: Note on affine Gagliardo-Nirenberg inequalities. Potential Anal. 34, 1–12 (2011)

    Article  MathSciNet  Google Scholar 

  29. Zhang, G.: The affine Sobolev inequality. J. Differ. Geom. 53, 183–202 (1999)

    Article  MathSciNet  Google Scholar 

  30. Zhang, G.: A positive answer to the Busemann-Petty problem in \({\mathbb{R}}^4\). Ann. Math. 149, 535–543 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the referee for his/her careful reading and valuable suggestions and comments on previous versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songjun Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported partly by Natural Science Foundation of Chongqing China under Grants cstc2018jcyjAX0190.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, S. A Functional Busemann Intersection Inequality. J Geom Anal 31, 6274–6291 (2021). https://doi.org/10.1007/s12220-020-00527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00527-7

Keywords

Mathematics Subject Classification

Navigation