Skip to main content
Log in

Cracking to curling transition in drying colloidal films

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Drying-induced cracking is widely encountered in nature and is of fundamental interest in industrial applications. During desiccation, the evolution of water content is nonlinear. Considering the inhomogeneous procedure of desiccation, it is worth considering whether water content will affect the crack pattern formation. To address this concern, in this paper, we report an experimental investigation on the effect of water content on the failure mode in drying colloidal films. A distinct failure transition from random cracking to curling is found when the initial water content increases gradually. When the water content is below a critical value for given film thickness, random desiccation cracking driven by shrinkage is observed. Beyond this critical water content, the film curls with the advent of several main cracks. It is also found that the critical water content corresponding to the transition point depends on the film thickness. In order to qualitatively interpret the experimental observation, a theoretical model is established by adopting the fracture mechanics based on the energy method. The model is found to agree well with the experimental results, elucidating the effects of initial water content on the crack patterns and the transition of failure modes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ma, H.T. Davis, L.E. Scriven, Prog. Org. Coat. 52, 46 (2005)

    Article  Google Scholar 

  2. R. Gupta, K.D.M. Rao, K. Srivastava, A. Kumar, S. Kiruthika, G.U. Kulkarni, ACS Appl. Mater. Interfaces 6, 13688 (2014)

    Article  Google Scholar 

  3. J.H. Prosser, T. Brugarolas, S. Lee, A.J. Nolte, D. Lee, Nano Lett. 12, 5287 (2012)

    Article  ADS  Google Scholar 

  4. F. Juillerat, P. Bowen, H. Hofmann, Langmuir 22, 2249 (2006)

    Article  Google Scholar 

  5. J. Zhang, Z. Sun, B. Yang, Curr. Opin. Colloid Interface Sci. 14, 103 (2009)

    Article  ADS  Google Scholar 

  6. L. Goehring, R. Conroy, A. Akhter, W.J. Clegg, A.F. Routh, Soft Matter 6, 3562 (2010)

    Article  ADS  Google Scholar 

  7. L. Goehring, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 371, 20120353 (2013)

    ADS  Google Scholar 

  8. L. Goehring, A. Nakahara, T. Dutta, S. Kitsunezaki, S. Tarafdar, Desiccation Cracks and Their Patterns: Formation and Modelling in Science and Nature (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015)

  9. M.S. Tirumkudulu, W.B. Russel, Langmuir 21, 4938 (2005)

    Article  Google Scholar 

  10. W.P. Lee, A.F. Routh, Langmuir 20, 9885 (2004)

    Article  Google Scholar 

  11. K.A. Shorlin, J.R. de Bruyn, M. Graham, S.W. Morris, Phys. Rev. E 61, 6950 (2000)

    Article  ADS  Google Scholar 

  12. H. Colina, S. Roux, Eur. Phys. J. E 1, 189 (2000)

    Article  Google Scholar 

  13. C.-S. Tang, B. Shi, C. Liu, W.-B. Suo, L. Gao, Appl. Clay Sci. 52, 69 (2011)

    Article  Google Scholar 

  14. L. Pauchard, Europhys. Lett. 74, 188 (2006)

    Article  ADS  Google Scholar 

  15. F. Giorgiutti-Dauphine, L. Pauchard, Colloids Surf. Physicochem. Eng. Asp. 466, 203 (2015)

    Article  Google Scholar 

  16. F. Giorgiutti-Dauphine, L. Pauchard, Soft Matter 11, 1397 (2015)

    Article  ADS  Google Scholar 

  17. B. Yang, J.S. Sharp, M.I. Smith, Sci. Rep. 6, 32296 (2016)

    Article  ADS  Google Scholar 

  18. P.-C. Kiatkirakajorn, L. Goehring, Phys. Rev. Lett. 115, 088302 (2015)

    Article  ADS  Google Scholar 

  19. B. Yang, J.S. Sharp, M.I. Smith, ACS Nano 9, 4077 (2015)

    Article  Google Scholar 

  20. H.N. Yow, M. Goikoetxea, L. Goehring, A.F. Routh, J. Colloid Interface Sci. 352, 542 (2010)

    Article  ADS  Google Scholar 

  21. M.I. Smith, J.S. Sharp, Langmuir 27, 8009 (2011)

    Article  Google Scholar 

  22. V. Lazarus, L. Pauchard, Soft Matter 7, 2552 (2011)

    Article  ADS  Google Scholar 

  23. T. Khatun, T. Dutta, S. Tarafdar, Eur. Phys. J. E 38, 83 (2015)

    Article  Google Scholar 

  24. M.S. Tirumkudulu, W.B. Russel, Langmuir 20, 2947 (2004)

    Article  Google Scholar 

  25. L. Pauchard, B. Abou, K. Sekimoto, Langmuir 25, 6672 (2009)

    Article  Google Scholar 

  26. V.R. Dugyala, H. Lama, D.K. Satapathy, M.G. Basavaraj, Sci. Rep. 6, 30708 (2016)

    Article  ADS  Google Scholar 

  27. S. Koga, S. Inasawa, Colloids Surf. Physicochem. Eng. Asp. 563, 95 (2019)

    Article  Google Scholar 

  28. K.F. DeCarlo, N. Shokri, Water Resour. Res. 50, 3039 (2014)

    Article  ADS  Google Scholar 

  29. U.U. Ghosh, M. Chakraborty, A.B. Bhandari, S. Chakraborty, S. DasGupta, Langmuir 31, 6001 (2015)

    Article  Google Scholar 

  30. Y. Chen, A. Askounis, V. Koutsos, P. Valluri, Y. Takata, S.K. Wilson, K. Sefiane, Langmuir 36, 204 (2020)

    Article  Google Scholar 

  31. T. Liu, H. Luo, J. Ma, W. Xie, Y. Wang, G. Jing, Eur. Phys. J. E 39, 24 (2016)

    Article  Google Scholar 

  32. N. Mohammad, W. Meng, Y. Zhang, M. Liu, A. El-Zein, Y. Gan, Environ. Geotech. (2020) https://doi.org/10.1680/jenge.19.00112

  33. K.M. Tran, H.H. Bui, J. Kodikara, M. Sánchez, Can. Geotech. J. 57, 408 (2020)

    Article  Google Scholar 

  34. B. Sobac, P. Colinet, L. Pauchard, Soft Matter 15, 2381 (2019)

    Article  ADS  Google Scholar 

  35. A. Bagchi, G.E. Lucas, Z. Suo, A.G. Evans, J. Mater. Res. 9, 1734 (1994)

    Article  ADS  Google Scholar 

  36. Z. Wen, Chin. J. Rock Mech. Eng. 25, 794 (2006)

    Google Scholar 

  37. A. Nakahara, Y. Matsuo, J. Phys. Soc. Jpn. 74, 1362 (2005)

    Article  ADS  Google Scholar 

  38. Y. Matsuo, A. Nakahara, J. Phys. Soc. Jpn. 81, 024801 (2012)

    Article  ADS  Google Scholar 

  39. H. Nakayama, Y. Matsuo, O. Takeshi, A. Nakahara, Eur. Phys. J. E 36, 1 (2013)

    Article  Google Scholar 

  40. C. Liu, B. Shi, J. Zhou, C. Tang, Appl. Clay Sci. 54, 97 (2011)

    Article  Google Scholar 

  41. C. Liu, C.-S. Tang, B. Shi, W.-B. Suo, Comput. Geosci. 57, 77 (2013)

    Article  ADS  Google Scholar 

  42. H.-J. Vogel, H. Hoffmann, A. Leopold, K. Roth, Geoderma 125, 213 (2005)

    Article  ADS  Google Scholar 

  43. T. Khatun, T. Dutta, S. Tarafdar, Eur. Phys. J. E 38, 83 (2015)

    Article  Google Scholar 

  44. S. Dutta, S. Sen, T. Khatun, T. Dutta, S. Tarafdar, Front. Phys. 7, 61 (2019)

    Article  Google Scholar 

  45. A.A. Griffith, Philos. Trans. R. Soc. London A 221, 163 (1921)

    Article  ADS  Google Scholar 

  46. Z. Suo, J.W. Hutchinson, Int. J. Fract. 43, 1 (1990)

    Article  Google Scholar 

  47. S. Kitsunezaki, J. Phys. Soc. Jpn. 78, 064801 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Q. Chen.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, W., Liu, M., Gan, Y. et al. Cracking to curling transition in drying colloidal films. Eur. Phys. J. E 43, 64 (2020). https://doi.org/10.1140/epje/i2020-11985-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11985-4

Keywords

Navigation