Skip to main content
Log in

Generating isolated attosecond pulse by a dual optical gating scheme

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Based on the theory of strong field approximation, we simulate the high harmonic and attosecond pulse generation from helium atom irradiated by a dual optical gating pulse composed of an orthogonally polarized field and a second harmonic pulse. The orthogonally polarized field consists of two linearly polarized pulses with a certain time delay, orthogonally polarized directions and 7 fs pulse duration. If the pulse that occurs first is called the driving pulse, the delayed pulse is called the gating pulse. The dual optical gating pulse is realized by adding a linearly polarized second harmonic pulse in the direction of the driving pulse of an orthogonally polarized field. It is found if the time delay between the driving pulse and the gating pulse and the phase difference between the second harmonic pulse and the driving pulse are reasonably adjusted, the high order harmonic generation spectra with higher efficiency and supercontinuum bandwidth can be obtained. After the inverse Fourier transform, an isolated short pulse with 124 as pulse duration can be obtained. Compared with the double optical gating scheme proposed by Chang et al., this experimentally relatively easy-to-operate scheme, on the one hand, overcomes the restrictions on the pulse width and intensity of the incident drive pulse, and on the other hand, avoids the atomic pre-ionization caused by the laser cycles before the polarization gate which is not conducive to the harmonic phase matching.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)

    Article  Google Scholar 

  2. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, M.U. Kleineberg, U. Heinzmann, F. Krausz, Nature 419, 803 (2002)

    Article  ADS  Google Scholar 

  3. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, M. Nisoli, Science 314, 443 (2006)

    Article  ADS  Google Scholar 

  4. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)

    Article  ADS  Google Scholar 

  5. J. Li, X. Ren, Y. Yin, K. Zhao, A. Chew, Y. Cheng, E. Cunningham, Y. Wang, S. Hu, Y. Wu, N.M. Chi, Z. Chang, Nat. Commun. 8, 794 (2017)

    Article  ADS  Google Scholar 

  6. P. Tzallas, E. Skantzakis, C. Kalpouzos, E.P. Benis, G.D. Tsakiris, D. Charalambidis, Nat. Phys. 3, 846 (2007)

    Article  Google Scholar 

  7. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  8. E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Science 320, 1614 (2008)

    Article  ADS  Google Scholar 

  9. W. Cao, P. Lu, P. Lan, X. Wang, G. Yang, Phys. Rev. A 74, 063821 (2006)

    Article  ADS  Google Scholar 

  10. P.B. Corkum, N.H. Burnett, M.Y. Ivanov, Opt. Lett. 19, 1870 (1994)

    Article  ADS  Google Scholar 

  11. H. Vincenti, F. Quéré, Phys. Rev. Lett. 108, 113904 (2012)

    Article  ADS  Google Scholar 

  12. K.J. Yuan, A.D. Bandrauk, Phys. Rev. Lett. 110, 023003 (2013)

    Article  ADS  Google Scholar 

  13. T. Pfeifer, L. Gallmann, M.J. Abel, D.M. Neumark, S.R. Leone, Opt. Lett. 31, 975 (2006)

    Article  ADS  Google Scholar 

  14. H. Mashiko, S. Gilbertson, C.Q. Li, S. Khan, M. Shakya, E. Moon, Z.H. Chang, Phys. Rev. Lett. 100, 103906 (2008)

    Article  ADS  Google Scholar 

  15. D. Kormin, A. Borot, G.J. Ma, W. Dallari, B. Bergues, M. Aladi, I. Földes, L. Veisz, Nat. Commun. 9, 4992 (2018)

    Article  ADS  Google Scholar 

  16. T. Gaumnitz, A. Jain, Y. Pertot, M. Huppert, I. Jordan, F. Ardana-Lamas, H.J. Wörner, Opt. Express 25, 27506 (2017)

    Article  ADS  Google Scholar 

  17. H. Merdji, T. Auguste, W. Boutu, J.-P. Caumes, B. Carré, T. Pfeifer, A. Jullien, D.M. Neumark, S.R. Leone, Opt. Lett. 32, 3134 (2007)

    Article  ADS  Google Scholar 

  18. C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, S. Stagira, Phys. Rev. A 79, 033842 (2009)

    Article  ADS  Google Scholar 

  19. Z. Zeng, Y. Cheng, X. Song, R. Li, Z. Xu, Phys. Rev. Lett. 98, 203901 (2007)

    Article  ADS  Google Scholar 

  20. E.J. Takahashi, P. Lan, O.D. Mücke, Y. Nabekawa, K. Midorikawa, Nat. Commun. 4, 2691 (2013)

    Article  ADS  Google Scholar 

  21. J.J. Xu, Phys. Rev. A 83, 033823 (2011)

    Article  ADS  Google Scholar 

  22. L.X. Chang, G.T. Zhang, J. Wu, X.S. Liu, Phys. Rev. A 81, 043420 (2010)

    Article  ADS  Google Scholar 

  23. Y. Yu, X. Song, Y. Fu, R. Li, Y. Cheng, Z. Xu, Opt. Lett. 16, 686 (2008)

    Google Scholar 

  24. I.J. Sola, E. Mevel, L. Elouga, E. Constant, V. Strelkov, L. Poletto, P. Villoresi, E. Benedetti, J.P. Caumes, S. Stagira, C. Vozzi, G. Sansone, M. Nisoli, Nat. Phys. 2, 319 (2006)

    Article  Google Scholar 

  25. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X.W. Wang, Z.H. Chang, Opt. Lett. 37, 3891 (2012)

    Article  ADS  Google Scholar 

  26. L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964)

    Google Scholar 

  27. F.H.M. Faisal, J. Phys. B 6, L89 (1973)

    Article  ADS  Google Scholar 

  28. H.R. Reiss, Phys. Rev. A 22, 1786 (1980)

    Article  ADS  Google Scholar 

  29. Z.H. Chang, Phys. Rev. A 70, 043802 (2004)

    Article  ADS  Google Scholar 

  30. M. Lewenstein, P. Salieres, A. L’Huillier, Phys. Rev. A 52, 4747 (1995)

    Article  ADS  Google Scholar 

  31. M.V. Ammosov, N.B. Delone, V.P. Krainov, Zh. Eksp. Teor. Fiz. 91, 2008 (1986)

    Google Scholar 

  32. A. Bouhal, P. Salières, P. Breger, P. Agostini, G. Hamoniaux, A. Mysyrowicz, A. Antonetti, R. Constantinescu, H.G. Muller, Phys. Rev. A 58, 389 (1998)

    Article  ADS  Google Scholar 

  33. C. Winterfeldt, C. Spielmann, G. Gerber, Rev. Mod. Phys. 80, 117 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao Chen.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Su, N. Generating isolated attosecond pulse by a dual optical gating scheme. Eur. Phys. J. D 74, 202 (2020). https://doi.org/10.1140/epjd/e2020-10268-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10268-3

Keywords

Navigation