Skip to main content
Log in

Simulation study of influence of exit magnetic separatrix angle on plume divergence control

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Cusped field thruster is a novel electrostatic thruster suitable for space exploration, but with high plume divergence angle. In this article, a 2D Particle-in-cell plus Monte Carlo (PIC-MCC) model is built to study the influence of exit magnetic separatrix angle on controlling plume divergence of cusped field thruster. The electric potential contour line distribution characteristics near exit magnetic separatrix with different angle are obtained and their formation mechanism is explained by magnetic mirror effect and electron pressure term. Simulation results show laying additional magnetic ring at the exit of channel can transfer exit magnetic separatrix towards inward of channel, which can decrease angle between electric potential contour line and central axis and increase ion axial speed. It is mainly due to change of magnetic field line direction and enhancement of magnetic mirror effect. However, simulation results show that ionization intensity in the channel decreases after adopting the plume control method. The plume divergence control method increases the channel length and causes the exit magnetic cusp inside the channel. Therefore the influence of exit magnetic separatrix angle on the characteristics of electron and ion energy deposition distribution on wall is further investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Gullickson, H.L. Sahlin, J. Appl. Phys. 49, 1099 (1978)

    Article  ADS  Google Scholar 

  2. K. Schmitt, H. Krompholz, F. Ruhl, G. Herziger, Phys. Lett. 95A, 239 (1975)

    ADS  Google Scholar 

  3. R.S. Rawat, P. Lee, T. White, L. Ying, S. Lee, Surf. Coat. Technol. 138, 159 (2001)

    Article  Google Scholar 

  4. R.S. Rawat, M.P. Srivastava, S. Tandon, A. Mansingh, Phys. Rev. B: Condens. Matter 47, 4858 (1993)

    Article  ADS  Google Scholar 

  5. B. Brunelli, G.G. Leotta, Ettore Majorana International Science (Plenum Press, New York, 1982)

  6. E.H. Beckner, J. Appl. Phys. 37, 4944 (1966)

    Article  ADS  Google Scholar 

  7. Y. Kato, S.H. Be, Appl. Phys. Lett. 48, 686 (1986)

    Article  ADS  Google Scholar 

  8. M. Keidar, I.D. Boyd, J. Appl. Phys. 86, 1 (1999)

    Article  Google Scholar 

  9. A.I. Morozov, A.I. Bugrova, V.A. Ermolenko, L.A. Lein, Sov. Phys. Tech. Phys. 33, 185 (1998)

    Google Scholar 

  10. L.B. King and A.D. Gallimore, American Institute of Aeronautics and Astronautics, Paper No. 96-2712, Lake Buena Vista, FL, 1996

  11. Y. Raitses, L.A. Dorf, A.A. Litvak, N.J. Fisch, J. Appl. Phys. 88, 1263 (2000)

    Article  ADS  Google Scholar 

  12. G. Kornfeld, N. Koch, H.P. Harmann, in Proceedings of the 4th International Spacecraft Propulsion Conference, Cagliari, Italy, 2004

  13. G. Kornfeld, H.-P. Harmann, N. Koch, AIAA Paper No. 2005-4223, 2005

  14. G. Kornfeld, N. Koch, G. Coustou, in Proceedings of the 4th International Conference on Vacuum Electronics, Seoul, South Korea, 2003

  15. N. Koch, H.P. Harmann, G. Kornfeld, in Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, AZ (AIAA, 2005)

  16. K. Matyash, R. Schneider, A. Mutzke, et al., IEEE Trans. Plasma Sci. 38, 2274 (2010)

    Article  ADS  Google Scholar 

  17. G. Kornfeld, et al., High power HEMP-thruster module, status and results of a DLR and ESA development program, in Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, CA (AIAA, 2006)

  18. G. Kornfeld, H.P. Harmann, N. Koch, in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, 10–13 July (2005), Paper No. AIAA- 2005-4223

  19. Y. Ding, L. Ma, Z. Xu, et al., Geod. Geodyn. 6, 299 (2015)

    Article  Google Scholar 

  20. T. Matlock, S. Gildea, F. Hu, N. Becker, P. Lozano, M. Martinez-Sanchez, in 46th AIAA Plasmadyn. Lasers Conf. Exhibit, Nashville, TN, America, 25–28 July (2010)

  21. S.R. Gildea, M. Martinez-Sanchez, M.R. Nakles, W.A. Hargus Jr., in 31st International Electric Propulsion Conference, Michigan, USA, 20–24 September (2009), Paper No. IEPC-2009-259

  22. T.S. Matlock, F. Huy, M. Martinez-Sanchezz, in 32nd International Electric Propulsion Conference, Wiesbaden, Germany, 11–15 September (2011), Paper No. IEPC-2011-178

  23. H. Liu, G. Sun, Y. Zhao, et al., IEEE Trans. Plasma Sci. 43, 127 (2015)

    Article  ADS  Google Scholar 

  24. T. Brandt, C. Braxmaier, F. Jansen, et al., in 34th International Electric Propulsion Conference, Kobe, Japan, 4–10 July (2015), Paper No. IEPC-2015-374

  25. D. Kahnfeld, et al., Plasma Sources Sci. Technol. 27, 124002 (2018)

    Article  Google Scholar 

  26. N.A. MacDonald, C.V. Young, M.A. Cappelli, et al., J. Appl. Phys. 111, 093303 (2012)

    Article  ADS  Google Scholar 

  27. G. Kornfeld, in 34th International Electric Propulsion Conference, Kobe, Japan, 4–10 July (2015), Paper No. IEPC-2015-406

  28. H. Liu, P. Chen, Y. Zhao, et al., Chin. Phys. B 24, 438 (2015)

    Google Scholar 

  29. H. Liu, H. Wu, Y. Zhao, D. Yu, C. Ma, D. Wang, H. Wei, Phys. Plasma 21, 090706 (2014)

    Article  ADS  Google Scholar 

  30. D. Meeker, FEMM 2004 Finite Element Method Magnetics, Software Package, Ver. 4.0 (Foster-Miller Inc., Boston, MA, 2006)

  31. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (Adam Hilger, New York, 1991)

  32. V. Vahedi, M. Surendra, Comput. Phys. Commun. 87, 179 (1995)

    Article  ADS  Google Scholar 

  33. J.J. Szabo, Ph.D. dissertation, Massachusetts Institute of Technology, 2001

  34. Y.J. Zhao, H. Liu, D.R. Yu, P. Hu, H. Wu, J. Phys. D: Appl. Phys. 47, 045201 (2014)

    Article  ADS  Google Scholar 

  35. N.A. MacDonald, M.A. Cappelli, S.R. Gildea, M. Martinez-Sanchez, W.A. Hargus Jr., J. Phys. D: Appl. Phys. 44, 295203 (2011)

    Article  Google Scholar 

  36. R. Schneider, K. Matyash, O. Kalentev, F. Taccogna, N. Koch, M. Schirra, Contrib. Plasma Phys. 49, 655 (2009)

    Article  ADS  Google Scholar 

  37. N.J. Fish, Y. Raitses, A. Fruchtman, Plasma Phys. Control. Fusion 53, 124038 (2011)

    Article  ADS  Google Scholar 

  38. M. Keidar, I.D. Boyd, Appl. Phys. Lett. 87, 121501 (2015)

    Article  ADS  Google Scholar 

  39. H. Liu, et al., Plasma Sci. Technol. 21, 045502 (2019)

    Article  ADS  Google Scholar 

  40. L. Hui, C. Peng-Bo, Z. Yin-Jian, Y. Da-Ren, Chin. Phys. B 24, 085202 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Niu.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Niu, X., Li, X. et al. Simulation study of influence of exit magnetic separatrix angle on plume divergence control. Eur. Phys. J. D 74, 195 (2020). https://doi.org/10.1140/epjd/e2020-100595-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100595-0

Keywords

Navigation