Skip to main content
Log in

Enhanced optomechanically induced transparency and slow/fast light in a position-dependent mass optomechanics

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We impart a theoretical method to enhance optomechanically induced transparency (OMIT) and slow/fast light in a standard optomechanical system composed of a fixed mirror and a moving end mirror. The system is driven by a strong pump field and probed by a weak probe field, respectively. We consider the mass of the mechanical resonator is position-dependent which generates a nonlinear effect in the system. In this paper, we show that the nonlinear parameter α of the position-dependent mass shifts the system from Stokes to the anti-Stokes regime, as a result, OMIT of the transmission field enhances. Further, we show the nonlinear parameter α changes the transparency window from symmetric to asymmetric window profile and looks like Fano resonances. Moreover, in the presence of α, we explain the behavior of mirror field coupling on the width of the transparency window as well. In particular, we present the enhancement of slow/fast light corresponds to the positive/negative dispersion of the phase associated with the transmission probe field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Teufel, T. Donner, et al., Nature 475, 359 (2011)

    Article  ADS  Google Scholar 

  2. A. Jöckel, et al., Nat. Nanotechnol. 10, 55 (2015)

    Article  ADS  Google Scholar 

  3. S. Huang, A. Chen, Appl. Sci. 9, 3402 (2019)

    Article  Google Scholar 

  4. M.S. Groblacher, K. Hammerer, M.R. Aspelmeyer, Nature (London) 460, 724 (2009)

    Article  ADS  Google Scholar 

  5. H. Seok, L.F. Buchmann, E.M. Wright, P. Meystre, Phys. Rev. A 88, 063850 (2013)

    Article  ADS  Google Scholar 

  6. I.C. Rodrigues, D. Bothner, G.A. Steele, Nat. Commun. 10, 5359 (2019)

    Article  ADS  Google Scholar 

  7. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  8. L. Midolo, A. Schliesser, A. Fiore, Nat. Nanotechnol. 13, 11 (2018)

    Article  ADS  Google Scholar 

  9. H.J. Chen, J.Y. Yang, D.M. Zhao, H.W. Wu, Appl. Opt. 58, 10 (2019)

    Article  Google Scholar 

  10. M. Ho, E. Oudot, J.D. Bancal, N. Sangouard, Phys. Rev. Lett. 121, 023602 (2018)

    Article  ADS  Google Scholar 

  11. L.-G. Qin, et al., J. Opt. Soc. Am. B 36, 6 (2019)

    Article  Google Scholar 

  12. A. Kronwald, F. Marquardt, A.A. Clerk, Phys. Rev. A 88, 063833 (2013)

    Article  ADS  Google Scholar 

  13. L. Liu, B.-P. Hou, X.-H. Zhao, B. Tang, Opt. Express 27, 6 (2019)

    Google Scholar 

  14. G. Huang, W. Deng, H. Tan, G. Cheng, Phys. Rev. A 99, 043819 (2019)

    Article  ADS  Google Scholar 

  15. K. Hammerer, et al., Phys. Rev. Lett. 103, 063005 (2009)

    Article  ADS  Google Scholar 

  16. K. Ullah, F. Saif, Eur. Phys. J. D. 72, 204 (2018)

    Article  ADS  Google Scholar 

  17. K. Ullah, Phys. Lett. A 383, 3074 (2019)

    Article  ADS  Google Scholar 

  18. F. Zou, L.-B. Fan, J.-F. Huang, J.-Q. Liao, Phys. Rev. A 99, 043837 (2019)

    Article  ADS  Google Scholar 

  19. G.A. Brawley, et al., Nat. Commun. 7, 10988 (2016)

    Article  ADS  Google Scholar 

  20. M. Brunelli, D. Malz, A. Nunnenkamp, Phys. Rev. Lett. 123, 093602 (2019)

    Article  ADS  Google Scholar 

  21. K.J. Boller, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  22. S.E. Harris, Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  23. G.S. Agarwal, S. Huang, Phys. Rev. A 81, 041803(R) (2010)

    Article  ADS  Google Scholar 

  24. G.S. Agarwal, S. Huang, Phys. Rev. A 83, 023823 (2011)

    Article  ADS  Google Scholar 

  25. S. Weis, et al., Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  26. A.H. Safavi-Naeini, et al., Nature (London) 472, 69 (2011)

    Article  ADS  Google Scholar 

  27. J. Roesch, AIP Adv. 8 (2018) 115309.

    Article  ADS  Google Scholar 

  28. X.Y. Zhang, Y.H. Zhou, Y.Q. Guo, X.X. Yi, Phys. Rev. A 98, 053802 (2018)

    Article  ADS  Google Scholar 

  29. M. Karuza, et al., Phys. Rev. A 88, 013804 (2013)

    Article  ADS  Google Scholar 

  30. H.-J. Chen, EPJ Quantum Technol. 6, 3 (2019)

    Article  Google Scholar 

  31. K. Ullah, H. Jing, F. Saif, Phys. Rev. A 97, 033812 (2018)

    Article  ADS  Google Scholar 

  32. K. Ullah, Eur. Phys. J. D 73, 267 (2019)

    Article  ADS  Google Scholar 

  33. A. Kasapi, M. Jain, G.Y. Yin, S.E. Harris, Phys. Rev. Lett. 74, 2447 (1995)

    Article  ADS  Google Scholar 

  34. F.L. Kien, K. Hakuta, Phys. Rev. A 79, 013818 (2009)

    Article  ADS  Google Scholar 

  35. A. Dogariu, A. Kuzmich, L.J. Wang, Phys. Rev. A 63, 053806 (2001)

    Article  ADS  Google Scholar 

  36. M.K. Moghaddam, R. Fleury, Opt. Express 27, 18 (2019)

    Article  Google Scholar 

  37. M.G. Herráez, K.Y. Song, L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005)

    Article  ADS  Google Scholar 

  38. D.E. Chang, A.H. Safavi-Naeini, M. Hafezi, O. Painter, New J. Phys. 13, 023003 (2011)

    Article  ADS  Google Scholar 

  39. B. Chen, C. Jiang, K.D. Zhu, Phys. Rev. A 83, 055803 (2011)

    Article  ADS  Google Scholar 

  40. C. Jiang, Y. Cui, Z. Zhai, H. Yu, X. Li, G. Chen, Opt. Express 27, 21 (2019)

    Google Scholar 

  41. X.G. Zhan, L.G. Si, A.S. Zheng, X. Yang, J. Phys. B: At. Mol. Opt. Phys. 46, 025501 (2013)

    Article  ADS  Google Scholar 

  42. P.C. Ma, L.L. Yan, G.B. Chen, X.W. Li, Y.B. Zhan, Laser Phys. Lett. 13, 125301 (2016)

    Article  ADS  Google Scholar 

  43. F. Saif, K. Ullah, S. Watanabe, AIP Conf. Proc. 2067, 020002 (2019)

    Article  Google Scholar 

  44. C.-M. Han, X. Wan, H. Chen, H.-R. Li, Opt. Commun. 456, 124605 (2019)

    Article  Google Scholar 

  45. C. Jiang, H. Liu, Y. Cui, X. Li, G. Chen, B. Chen, Opt. Express 21, 12166 (2013).

    ADS  Google Scholar 

  46. Z. Wu, R.H. Luo, J.Q. Zhang, Y.H. Wang, W. Yang, M. Feng, Phys. Rev. A 96, 033832 (2018)

    Article  ADS  Google Scholar 

  47. J.C. Slater, Phys. Rev. 76, 1592 (1949)

    Article  ADS  Google Scholar 

  48. M. Barranco, E.S. Hernndez, J. Navarro, Phys. Rev. B 54, 7394 (1996)

    Article  ADS  Google Scholar 

  49. R.A. El-Nabulsi, Eur. Phys. J. Plus 134, 192 (2019)

    Article  Google Scholar 

  50. J. Yu, S.-H. Dong, G.-H. Sunc, Phys. Lett. A 322, 5 (2004)

    Article  Google Scholar 

  51. B.J. Falaye, F.A. Serrano, S.-H. Dong, Phys. Lett. A 380, 267 (2016)

    Article  ADS  Google Scholar 

  52. G. Chen, Z.-D. Chen, Phys. Lett. A 325, 194 (2004)

    Article  MathSciNet  Google Scholar 

  53. R. Ahmad El-Nabulsi, Few-Body Syst. 61, 10 (2020)

    Article  ADS  Google Scholar 

  54. R. Ahmad El-Nabulsi, Proc. R. Soc. A 476, 20190729 (2020)

    Article  Google Scholar 

  55. R. Ahmad El-Nabulsi, J. Phys. Chem. Solids 140, 109384 (2020)

    Article  Google Scholar 

  56. I.A. Naeim, S. Abdalla, J. Batle, A. Farook, Rom. J. Phys. 62, 1 (2017)

    Google Scholar 

  57. S.-H. Dong, M. Lozada-Cassou, Phys. Lett. A 337, 313 (2005)

    Article  ADS  Google Scholar 

  58. L. Serra, E. Lipparini, Eur. Phys. Lett. 40, 667 (1997)

    Article  ADS  Google Scholar 

  59. G.T. Einevoll, P.C. Hemmer, J. Thomsen, Phys. Rev. B 42, 3485 (1990)

    Article  ADS  Google Scholar 

  60. F. Serafim, et al., Physica E 108, 139 (2019)

    Article  ADS  Google Scholar 

  61. I. Tanihataa, H. Savajolsc, R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013)

    Article  ADS  Google Scholar 

  62. M. Barranco, M. Pi, S.M. Gatica, E.S. Hernández, J. Navarro, Phys. Rev. B 56, 8997 (1997)

    Article  ADS  Google Scholar 

  63. S. Cruz y Cruz, J. Negro, L.M. Nieto, Phys. Lett. A, 369, 400 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  64. R.N. Costa Filho, M.P. Almeida, G.A. Farias, J.S. Andrade, Phys. Rev. A 84, 050102(R) (2011)

    Article  ADS  Google Scholar 

  65. M. Tchoffo, M. Vubangsi, L.C. Fai, Phys. Scr. 89, 105201 (2014)

    Article  ADS  Google Scholar 

  66. D.F. Walls, G.J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994)

  67. K. Ullah, Chin. Phys. B 28, 11 (2019)

    Google Scholar 

  68. K. Qu, G.S. Agarwal, Phys. Rev. A 87, 063813 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Ullah.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, K., Ullah, H. Enhanced optomechanically induced transparency and slow/fast light in a position-dependent mass optomechanics. Eur. Phys. J. D 74, 197 (2020). https://doi.org/10.1140/epjd/e2020-10286-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10286-1

Keywords

Navigation