Skip to main content
Log in

Role of various dielectric environment matrices of InP/ZnS core/shell quantum dot on optical gain coefficient

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Theoretical studies on excitonic and optical properties of a single exciton confined in an InP/ZnS heterostructure core/shell quantum dot embedded in various dielectric environments are investigated. The energies are found with and without the inclusion of dielectric mismatch employing single band effective mass approximation using variational formulism. The solution of Poisson-Schrödinger wave equations for the attractive term between the electron and hole is carried out using a self consistent approach in the Hartree approximation. The binding energy due to an exciton and oscillator strength is found with the effect of geometrical confinement. The total absorption coefficients, the injection current density for the optical output and the corresponding threshold optical pump intensity studied in the presence of various dielectric environments are investigated in the InP/ZnS heterostructure core/shell quantum dot. The ratio of core/shell hetero-structured quantum dot radius for various values of dielectric matrices immersed is found. The results show that the obtained properties are considerably enhanced with the incorporation of dielectric environment matrices immersed in the core/shell quantum dot particularly the highest dielectric constant will bring out the better results. It is hoped that to the present study will contribute the understanding of excitonic and optical properties in the group II–VI core/shell heterostructure quantum dots for the potential applications in photovoltaic and light emitting diodes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Sargent, Nat. Photonics 6, 133 (2012)

    Article  ADS  Google Scholar 

  2. J. Jean, S. Chang, P.R. Brown, J.J. Cheng, P.H. Rekemeyer, M.G. Bawendi, S. Gradečak, V. Bulović, Adv. Mater. 25, 2790 (2013)

    Article  Google Scholar 

  3. L. Wang, C. Clavero, Z. Huba, K.J. Carroll, E.E. Carpenter, D. Gu, R.A. Lukasew, Nano. Lett. 11, 1237 (2011)

    Article  ADS  Google Scholar 

  4. Z. Zeng, S. Christos, F. Garoufalis, A.F. Terzis, S. Baskoutas, J. Appl. Phys. 114, 023510 (2013)

    Article  ADS  Google Scholar 

  5. S. Pandey, T. Vimal, D.P. Singh, S.K. Gupta, G. Pathak, R. Katiyar, R. Manohar, Liq. Cryst. 43, 980 (2016)

    Article  Google Scholar 

  6. A.M. Smith, L.A. Lane, S. Nie, Nat. Commun. 5, 4506 (2014)

    Article  ADS  Google Scholar 

  7. Y. Jang, A. Shapiro, M. Isarov, A. Rubin-Brusilovski, A. Safran, A.K. Budniak, F. Horani, J. Dehnel, A. Sashchiuka, E. Lifshitz, Chem. Commun. 53, 1002 (2017)

    Article  Google Scholar 

  8. P.P. Ingole, Phys. Chem. 21, 4695 (2019)

    Google Scholar 

  9. A.R. AbouElhamd, K.A. Al-Sallal, A. Hassan, Energies 12, 1058 (2019)

    Article  Google Scholar 

  10. N.N. Valappil, M. Luberto, V.M. Menon, I. Zeylikovich, T.K. Gayen, J. Franco, B.B. Das, R.R. Alfano, Photon. Nanostruct. Fundam. Appl. 5, 184 (2007)

    Article  ADS  Google Scholar 

  11. H. Hafian, A. Sukhanova, M. Turini, P. Chames, D. Baty, M. Plouot, J.H.M. Cohen, I. Nabiev, J.M. Millot, Nanomed. NBM 10, 1701 (2014)

    Article  Google Scholar 

  12. L. Zhang, C. Liao, B. Lv, X. Wang, M. Xiao, R. Xu, Y. Yuan, C. Lu, Y. Cui, J. Zhang, A.C.S. Appl, Mater. Inter. 9, 13293 (2017)

    Article  Google Scholar 

  13. B. Le Feber, F. Prons, E. De Leo, F.T. Rabouw, D.J. Norris, Nano. Lett. 18, 1028 (2018)

    Article  ADS  Google Scholar 

  14. Y. Nandan, M.S. Mehata, Sci. Rep. 1, 9 (2019)

    Google Scholar 

  15. E.C. Niculescu, M. Criste, U.P.B. Sci. Bull. Ser. A 75, 195 (2013)

    Google Scholar 

  16. Z. Zaiping, Christos S. Garoufalis, S. Baskoutas, J. Nanoelec. Optoelec. 11, 1 (2016)

    Article  Google Scholar 

  17. A. Chafai, F. Dujardin, I. Essaoudi, A. Ainane, R. Ahuja, Superlattices Microstruct. 111, 976 (2017)

    Article  ADS  Google Scholar 

  18. M. Cristea, E.C. Niculescu, Eur. Phys. J. B. 85, 191 (2012)

    Article  ADS  Google Scholar 

  19. F. Bugge, G. Erbert, J. Fricke, Appl. Phys. Lett. 79, 1965 (2001)

    Article  ADS  Google Scholar 

  20. M. Elamathi, A. John Peter, C.W. Lee, J. Nanophoton. 12, 046012-1-046012-10 (2018)

    Article  ADS  Google Scholar 

  21. M.M. Richard, in Electronic structure, Basic theory and Practical methods (Cambridge University Press, Cambridge, 2008), Vol.61

  22. E.A. Johnson, in Low Dimensional Semiconductor Structures, edited by K. Barnham, D. Vvedensky (Cambridge University Press, Cambridge, England, 2001) p. 79

  23. M. Şahin, Phys. Rev. B 77, 045317 (2008)

    Article  ADS  Google Scholar 

  24. G. Allan, C. Delerue, M. Lannoo, E. Martin, Phys. Rev. B 52, 11982 (1995)

    Article  ADS  Google Scholar 

  25. N. Zeiri, A. Naifar, S. Abdi-Ben Nasrallah, M. Said, Results Phys. 15, 102661 (2019)

    Article  Google Scholar 

  26. A.L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris, M. Bawendi, Phys. Rev. B 54, 4843 (1996)

    Article  ADS  Google Scholar 

  27. I. Sadi, S. Ben Radhia, K. Boujdaria, J. Appl. Phys. 104, 023706 (2008)

    Article  ADS  Google Scholar 

  28. B. Cakir, Y. Yakar, A. Ozmen, M.O. Sezer, M. Sahin, Superlattices Microstruct. 47, 556 (2010)

    Article  ADS  Google Scholar 

  29. R. Kostic, D. Stojanovic, Phys. Scr. T 149, 014055 (2012)

    Article  ADS  Google Scholar 

  30. F. Jain, W. Huang, IEEE J. Quantum Electron. 32, 859 (1996)

    Article  ADS  Google Scholar 

  31. W. Huang, F. Jain, J. Appl. Phys. 81, 6781 (1997)

    Article  ADS  Google Scholar 

  32. W. Huang, F. Jain, J. Appl. Phys. 87, 7354 (2000)

    Article  ADS  Google Scholar 

  33. T.S. Moss, G.J. Burrell, B. Ellis, Semiconductor Opto-Electronics (Butterworths, London, 1973)

  34. M. Şahin, S. Nizamoglu, A. Emre Kavruk, H. Volkan Demir, J. Appl. Phys. 106, 043704 (2009)

    Article  ADS  Google Scholar 

  35. L.J. Mawst, N. Tansu, in Quantum-well lasers and their applications, Comprehensive semiconductor science and technology (2011), p. 647

  36. H. El Ghazi, A. John Peter, Physica B 462, 30 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amalorpavam John Peter or Chang Woo Lee.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elamathi, M., John Peter, A. & Lee, C.W. Role of various dielectric environment matrices of InP/ZnS core/shell quantum dot on optical gain coefficient. Eur. Phys. J. D 74, 196 (2020). https://doi.org/10.1140/epjd/e2020-10095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10095-6

Keywords

Navigation