Skip to main content
Log in

Characterizing long-chain branching in commercial HDPE samples via linear viscoelasticity and extensional rheology

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

It is well established that polymer chain architecture and the distribution of molecular weight play a key role in the flow behavior (processing) and performance of a given polymer material. Long-chain branching (LCB) in particular is known to strongly affect the processability and the material performance of polymers. Often branching is a result of the polymerization process and therefore must be quantified in every sample. We study four commercial high-density polyethylene (HDPE) samples with unknown degrees of polydispersity and LCB. We first use size-exclusion chromatography and linear shear rheology to identify differences in molecular weight, polydispersity, and LCB. Each material is then tested in constant rate and constant stress uniaxial extension using a filament stretching rheometer to quantify extensional viscosity and strain hardening. Correlations between nonlinear extensional rheology, LCB and polydispersity are discussed. We show that the combination of the van Gurp-Palmen plot and extensional rheology allows for a full characterization of the LCB fraction and their effect on extensional rheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal SL, Sweeting OJ (1957) Polyethylene: preparation, structure, and properties. Chem Rev 57(4):665–742

    Article  CAS  Google Scholar 

  • Alvarez NJ, Manuel J, Mari̇n R, Huang Q, Michelsen ML, Hassager O (2013) Creep measurements confirm steady flow after stress maximum in extension of branched polymer melts. Phys Rev Lett 110 (16):168301(4). https://doi.org/10.1103/PhysRevLett.110.168301

    Article  CAS  Google Scholar 

  • Bach A, Almdal K, Koblitz Rasmussen H, Hassager O (2003) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174–5179. https://doi.org/10.1021/ma034279q

    Article  CAS  Google Scholar 

  • Barham P, Hill M, Keller A, Cd Rosney (1988) Phase separation in polyethylene melts. J Mater Sci Lett 7(12):1271–1275

    Article  CAS  Google Scholar 

  • Bersted B (1985) On the effects of very low levels of long chain branching on rheological behavior in polyethylene. J Appl Polym Sci 30(9):3751–3765

    Article  CAS  Google Scholar 

  • Bhattacharjee PK, Oberhauser JP, Mckinley GH, Leal G, Sridhar T (2002) Extensional rheometry of entangled solutions. Macromolecules 35:10131–10148. https://doi.org/10.1021/ma0118623

    Article  CAS  Google Scholar 

  • Cho K, Lee BH, Hwang KM, Lee H, Choe S (1998) Rheological and mechanical properties in polyethylene blends. Polym Eng Sci 38(12):1969–1975

    Article  CAS  Google Scholar 

  • Costanzo S, Huang Q, Ianniruberto G, Marrucci G, Hassager O, Vlassopoulos D (2016) Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements. Macromolecules 49(10):3925–3935

    Article  CAS  Google Scholar 

  • Das C, Inkson NJ, Read DJ, Kelmanson MA, McLeish TC (2006) Computational linear rheology of general branch-on-branch polymers. J Rheol 50(2):207–234

    Article  CAS  Google Scholar 

  • Delgadillo-Velázquez O, Hatzikiriakos S (2008) Capillary extrusion studies of lldpe/ldpe blends: effects of manufacturing technology of lldpe and long chain branching. Int Polym Process 23(4):385–394

    Article  Google Scholar 

  • Delgadillo-Velázquez O, Hatzikiriakos S, Sentmanat M (2008) Thermorheological properties of lldpe/ldpe blends. Rheol acta 47(1):19–31

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1988) The theory of polymer dynamics, vol 73. Oxford university press, Oxford

    Google Scholar 

  • Fetters L, Lohse D, Colby R (2007) Chain dimensions and entanglement spacings. In: Physical properties of polymers handbook. Springer, pp 447–454

  • Fox TG, Flory PJ (1950) Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys 21(6):581–591. 10.1063/1.1699711

    Article  CAS  Google Scholar 

  • Gabriel C, Münstedt H (2003) Strain hardening of various polyolefins in uniaxial elongational flow. J Rheol 47(3):619–630

    Article  CAS  Google Scholar 

  • Garci̇a-Franco C A, Lohse DJ, Robertson CG, Georjon O (2008) Relative quantification of long chain branching in essentially linear polyethylenes. Eur Polym J 44(2):376–391. https://doi.org/10.1016/j.eurpolymj.2007.10.030

    Article  CAS  Google Scholar 

  • Graessley WW (1974) The entanglement concept in polymer rheology. In: The entanglement concept in polymer rheology. Springer, pp 1–179

  • Hatzikiriakos SG (2000) Long chain branching and polydispersity effects on the rheological properties of polyethylenes. Polym Eng Sci 40(11):2279–2287

    Article  CAS  Google Scholar 

  • Hengeller L, Huang Q, Dorokhin A, Alvarez NJ, Almdal K, Hassager O (2016) Stress relaxation of bi-disperse polystyrene melts Exploring the interactions between long and short chains in non-linear rheology. Rheol Acta 55:303–314. https://doi.org/10.1007/s00397-016-0916-9

    Article  CAS  Google Scholar 

  • Hogan J, Levett C, Werkman R (1967) Melt elasticity in linear pe containing long branches-pe having very high melt elasticity at low shear and high flow at high shear is particularly applicable to thermoforming and large blow moldings. SPE J 23(11):87

    CAS  Google Scholar 

  • Hu SR, Kyu T, Stein RS (1987) Characterization and properties of polyethylene blends I. Linear low-density polyethylene with high-density polyethylene. J Polym Sci B Polym Phys 25(1):71–87

    Article  CAS  Google Scholar 

  • Huang Q, Rasmussen H (2013) Molecular rheology of complex fluids. PhD thesis, Technical University of Denmark

  • Huang Q, Mednova O, Rasmussen HK, Alvarez NJ, Skov AL, Almdal K, Hassager O (2013) Concentrated polymer solutions are different from melts: role of entanglement molecular weight. Macromolecules 46(12):5026–5035. https://doi.org/10.1021/ma4008434

    Article  CAS  Google Scholar 

  • Huang Q, Agostini S, Hengeller L, Shivokhin M, Alvarez NJ, Hutchings LR, Hassager O (2016a) Dynamics of star polymers in fast extensional flow and stress relaxation. Macromolecules 49:6694–6699. https://doi.org/10.1021/acs.macromol.6b01348

    Article  CAS  Google Scholar 

  • Huang Q, Mangnus M, Alvarez NJ, Koopmans R, Hassager O (2016b) A new look at extensional rheology of low-density polyethylene. Rheol Acta 55:343–350. https://doi.org/10.1007/s00397-016-0921-z

    Article  CAS  Google Scholar 

  • Litvinov V, Ries M, Baughman T, Henke A, Matloka P (2013) Chain entanglements in polyethylene melts. Why is it studied again? Macromolecules 46(2):541–547

    Article  CAS  Google Scholar 

  • Mavridis H, Shroff R (1992) Temperature dependence of polyolefin melt rheology. Polym Eng Sci 32(23):1778–1791

    Article  CAS  Google Scholar 

  • van Meerveld J (2004) A method to extract the monomer friction coefficient from the linear viscoelastic behavior of linear, entangled polymer melts. Rheologica acta 43(6):615–623

    Article  CAS  Google Scholar 

  • Morelly SL, Palmese L, Watanabe H, Alvarez NJ (2019) Effect of finite extensibility on nonlinear extensional rheology of polymer melts. Macromolecules 52(3):915–922

    Article  CAS  Google Scholar 

  • Münstedt H, Auhl D (2005) Rheological measuring techniques and their relevance for the molecular characterization of polymers. J Nonnewton Fluid Mech 128(1):62–69

    Article  CAS  Google Scholar 

  • Münstedt H, Laun H (1981) Elongational properties and molecular structure of polyethylene melts. Rheol Acta 20(3):211–221

    Article  Google Scholar 

  • Münstedt H, Kurzbeck S, Egersdörfer L (1998) Influence of molecular structure on rheological properties of polyethylenes. Rheol Acta 37(1):21–29

    Article  Google Scholar 

  • Peacock A (2000) Handbook of polyethylene: structures: properties, and applications. CRC Press, New York

    Book  Google Scholar 

  • Peacock AJ, Calhoun A (2006) Polymer chemistry: properties and application. Hanser Publishers. Retrieved from https://app.knovel.com/hotlink/toc/id:kpPCPA0002/polymer-chemistry-properties/polymer-chemistry-properties

  • Shahid T, Clasen C, Oosterlinck F, van Ruymbeke E (2019) Diluting entangled polymers affects transient hardening but not their steady elongational viscosity. Macromolecules

  • Shroff R, Mavridis H (1999) Long-chain-branching index for essentially linear polyethylenes. Macromolecules 32(25):8454–8464

    Article  CAS  Google Scholar 

  • Stadler FJ, Münstedt H (2009) Correlations between the shape of viscosity functions and the molecular structure of long-chain branched polyethylenes. Macromol Mater Eng 294(1):25–34

    Article  CAS  Google Scholar 

  • Stadler FJ, Gabriel C, Münstedt H (2007) Influence of short-chain branching of polyethylenes on the temperature dependence of rheological properties in shear. Macromol Chem Phys 208(22):2449–2454

    Article  CAS  Google Scholar 

  • Tashiro K, Stein RS, Hsu SL (1992) Cocrystallization and phase segregation of polyethylene blends. 1. Thermal and vibrational spectroscopic study by utilizing the deuteration technique. Macromolecules 25 (6):1801–1808

    Article  CAS  Google Scholar 

  • Trinkle S, Friedrich C (2001) Van Gurp-Palmen-plot: a way to characterize polydispersity of linear polymers. Rheol Acta 40(4):322–328

    Article  CAS  Google Scholar 

  • Trinkle S, Walter P, Friedrich C (2002) Van gurp-palmen plot ii–classification of long chain branched polymers by their topology. Rheol Acta 41(1-2):103–113

    Article  CAS  Google Scholar 

  • Tung L (1959) A light-scattering study of low pressure polyethylene fractions. J Polym Sci 36 (130):287–294

    Article  CAS  Google Scholar 

  • Tung LH (1956) Fractionation of polyethylene. J Polym Sci 20(96):495–506. https://doi.org/10.1002/pol.1956.120209609

    Article  CAS  Google Scholar 

  • Van Gurp M, Palmen J (1998) Time-temperature superposition for polymeric blends. Rheol Bull 67(1):5–8

    Google Scholar 

  • Wasserman SH, Graessley WW (1996) Prediction of linear viscoelastic response for entangled polyolefin melts from molecular weight distribution. Polym Eng Sci 36(6):852–861

    Article  Google Scholar 

  • Wingstrand SL, Imperiali L, Stepanyan R, Hassager O (2018) Extension induced phase separation and crystallization in semidilute solutions of ultra high molecular weight polyethylene. Polymer 136:215–223. https://doi.org/10.1016/j.polymer.2017.12.042

    Article  CAS  Google Scholar 

  • Yasuda K, Armstrong R, Cohen R (1981) Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol Acta 20(2):163–178

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas J. Alvarez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.20 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morelly, S.L., Alvarez, N.J. Characterizing long-chain branching in commercial HDPE samples via linear viscoelasticity and extensional rheology. Rheol Acta 59, 797–807 (2020). https://doi.org/10.1007/s00397-020-01233-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-020-01233-5

Keywords

Navigation