Skip to main content
Log in

Synthesis, characterization and applications of poly(vinyl chloride) nanocomposites loaded with metal oxide nanoparticles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Metal oxide (i.e., Fe2O3, ZnO and TiO2) nanoparticles (NPs) have been prepared and investigated by various techniques with the objective of synthesis of nanocomposites thin films based on poly(vinyl chloride) (PVC) as a matrix. Different loadings of metal oxide NPs (i.e., 2.0, 5.0, 10.0 and 15.0 wt%) were incorporated in PVC followed by solution casting. The prepared film samples were characterized by X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), thermal and electrical measurements. Also, the antibacterial activity was tested against Gram-positive (i.e., Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (i.e., Escherichia coli and Pseudomonas aeruginosa). The results were discussed in relation to metal oxide NPs content and type. XRD of the prepared nanocomposite films was almost the same as that of mixed ZnO metal oxide NPs with an amorphous region of PVC. Raman spectra suggested that ZnO NPs were just physically inserted into PVC matrix. SEM revealed a homogeneous distribution of the NPs on using 10 wt% in PVC matrix, while the NPs agglomerations at higher content (i.e., 15 wt%) were formed. The dynamic mechanical results, as a function in temperature, indicated an increase in the storage and loss moduli and a decrease in loss factor tan δ with shifting to higher glass transition temperature, with increasing metal oxide NPs content up to 10 wt%. Thermal gravimetric analysis revealed that utilizing Fe2O3 and TiO2NPs in PVC matrix improved thermal stability of PVC in comparison with ZnO NPs with catalytic behavior and polymer decomposition acceleration. Metal oxide Nps increased the electrical conductivity of PVC, the electrical conductivity values were found to be in the order of 10−13 for ZnO, while it is in the order of 10−11 for Fe2O3 and TiO2. This finding is highly recommended such composites to be used in antistatic applications as the needed range for such application is 10−9–10−14Ω−1 cm−1. Metal oxide nanocomposites improved the antibacterial activity of PVC toward both types of bacteria and can be used as an effective antibacterial agent in biomedical healthy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sadek EM, El-nashar DE, Ahmed SM (2018) Influence of modifying agents of organoclay on the properties of nanocomposites based on acrylonitrile butadiene rubber. Egypt J Pet 27:1177–1185. https://doi.org/10.1016/j.ejpe.2018.04.007

    Article  Google Scholar 

  2. Velayutham TS, Abd Majid WH, Gan WC et al (2012) Theoretical and experimental approach on dielectric properties of ZnO nanoparticles and polyurethane/ZnO nanocomposites. J Appl Phys 112:054106. https://doi.org/10.1063/1.4749414

    Article  CAS  Google Scholar 

  3. Tanaka T (2005) Dielectric nanocomposites with insulating properties. IEEE Trans Dielectr Electr Insul 12:914–928

    Article  CAS  Google Scholar 

  4. Lewis K, Klibanov AM (2005) Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol 23:343–348. https://doi.org/10.1016/j.tibtech.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  5. Rosi NL, Mirkin CA (2005) Nanostructures in Biodiagnostics. Chem Rev 105:1547–1562. https://doi.org/10.1021/cr030067f

    Article  CAS  PubMed  Google Scholar 

  6. Azam A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomed. https://doi.org/10.2147/IJN.S29020

    Article  Google Scholar 

  7. Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028. https://doi.org/10.1021/la104825u

    Article  CAS  PubMed  Google Scholar 

  8. Azam A, Ahmed Oves et al (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 7:6003. https://doi.org/10.2147/IJN.S35347

    Article  CAS  Google Scholar 

  9. Sharfudeen BFJM, Latheef AFA, Ambrose RV (2017) Synthesis and characterization of TiO2 nanoparticles and investigation of antimicrobial activities against human pathogens. J Pharm Sci Res 9:1604

    CAS  Google Scholar 

  10. Chauhan BPS (2011) Hybrid nanomaterials: synthesis, characterization, and applications. John Wiley & Sons

  11. Abdel-Gawad NMK, El Dein AZ, Mansour DEA et al (2019) Development of industrial scale PVC nanocomposites with comprehensive enhancement in dielectric properties. IET Sci Meas Technol 13:90–96. https://doi.org/10.1049/iet-smt.2018.5270

    Article  Google Scholar 

  12. Mansour SA, Elsad RA, Izzularab MA (2018) Dielectric spectroscopic analysis of polyvinyl chloride nanocomposites loaded with Fe2O3 nanocrystals. Polym Adv Technol 29:2477–2485

    Article  CAS  Google Scholar 

  13. Arrieta MP, Samper MD, Jiménez-López M et al (2017) Combined effect of linseed oil and gum rosin as natural additives for PVC. Ind Crops Prod 99:196–204

    Article  CAS  Google Scholar 

  14. Mallakpour S, Sadaty MA (2016) Thiamine hydrochloride (vitamin B1) as modifier agent for TiO2 nanoparticles and the optical, mechanical, and thermal properties of poly (vinyl chloride) composite films. RSC Adv 6:92596–92604

    Article  CAS  Google Scholar 

  15. Lithner D, Nordensvan I, Dave G (2012) Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile–butadiene–styrene, and epoxy to Daphnia magna. Environ Sci Pollut Res 19:1763–1772

    Article  CAS  Google Scholar 

  16. Jagadish C, Pearton SJ (2011) Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. Elsevier

  17. Mallakpour S, Nazari HY (2017) Ultrasonic-assisted fabrication and characterization of PVC-SiO2 nanocomposites having bovine serum albumin as a bio coupling agent. Ultrason Sonochem 39:686–697

    Article  CAS  Google Scholar 

  18. Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448

    Article  CAS  Google Scholar 

  19. Motawie AM, Khalil AA, Eid AIA et al (2014) Some studies on poly (vinyl chloride)/layered silicate nanocomposites part 1, morphology, physico-mechanical, and thermal properties. J Appl Sci Res 9:6355–6364

    Google Scholar 

  20. Ponnamma D, Cabibihan J, Rajan M, Pethaiah S et al (2019) Synthesis, optimization and applications of ZnO/polymer nanocomposites. Mater Sci Eng C 98:1210–1240

    Article  CAS  Google Scholar 

  21. Arya PK, Mathur V, Patidar D (2017) Thermo-mechanical performance of PVC/ZnO nanocomposites. Phase Transit 90:695–702. https://doi.org/10.1080/01411594.2016.1263991

    Article  CAS  Google Scholar 

  22. Elashmawi IS, Hakeem NA, Marei LK, Hanna FF (2010) Structure and performance of ZnO/PVC nanocomposites. Phys B Condens Matter 405:4163–4169. https://doi.org/10.1016/j.physb.2010.07.006

    Article  CAS  Google Scholar 

  23. Mansour SA, Elsad RA, Izzularab MA (2016) Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J Polym Res 23:85. https://doi.org/10.1007/s10965-016-0978-5

    Article  CAS  Google Scholar 

  24. Ebnalwaled AA, Thabet A (2016) Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth Met 220:374–383. https://doi.org/10.1016/j.synthmet.2016.07.006

    Article  CAS  Google Scholar 

  25. Zarrinkhameh M, Zendehnam A, Hosseini SM (2015) Fabrication of polyvinylchloride based nanocomposite thin film filled with zinc oxide nanoparticles: morphological, thermal and optical characteristics. J Ind Eng Chem 30:295–301. https://doi.org/10.1016/j.jiec.2015.05.036

    Article  CAS  Google Scholar 

  26. Rabiee H, Vatanpour V, Farahani MHDA, Zarrabi H (2015) Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Sep Purif Technol 156:299–310. https://doi.org/10.1016/j.seppur.2015.10.015

    Article  CAS  Google Scholar 

  27. Zarrinkhameh M, Zendehnam A, Hosseini SM (2013) Electrochemical, morphological and antibacterial characterization of PVC based cation exchange membrane modified by zinc oxide nanoparticles. J Polym Res 20:283

    Article  Google Scholar 

  28. Mallakpour S, Darvishzadeh M (2018) Nanocomposite materials based on poly(vinyl chloride) and bovine serum albumin modified ZnO through ultrasonic irradiation as a green technique: optical, thermal, mechanical and morphological properties. Ultrason Sonochem 41:85–99. https://doi.org/10.1016/j.ultsonch.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  29. Hasan M, Banerjee AN, Lee M (2015) Enhanced thermo-mechanical performance and strain-induced band gap reduction of TiO2@PVC nanocomposite films. Bull Mater Sci 38:283–290. https://doi.org/10.1007/s12034-014-0831-6

    Article  CAS  Google Scholar 

  30. Zhang YX, Song YH, Zheng Q (2013) Mechanical and thermal properties of nanosized titanium dioxide filled rigid poly(vinyl chloride). Chin J Polym Sci (English Ed) 31:325–332. https://doi.org/10.1007/s10118-013-1219-6

    Article  CAS  Google Scholar 

  31. Mathur V, Arya PK (2018) Dynamic mechanical analysis of PVC/TiO2 nanocomposites. Adv Compos Hybrid Mater 1:741–747. https://doi.org/10.1007/s42114-018-0051-4

    Article  CAS  Google Scholar 

  32. Mathur V, Arya PK (2019) Assessment of tensile interphase profile of PVC/TiO2 polymer nanocomposites. Philos Mag Lett 99:87–94

    Article  CAS  Google Scholar 

  33. Liu F, Liu H, Li X et al (2012) Nano-TiO2@Ag/PVC film with enhanced antibacterial activities and photocatalytic properties. Appl Surf Sci 258:4667–4671. https://doi.org/10.1016/j.apsusc.2012.01.058

    Article  CAS  Google Scholar 

  34. Raz MA (2017) Synthesis and characterization of ZnO nano-particles for biomedical applications. Glob J Nanomed 2:1–3

    Google Scholar 

  35. Li X, Xing Y, Jiang Y, Ding Y, Li W (2009) Antimicrobial activities of ZnO powder coated PVC film to inactivate food pathogens. Int J Food Sci Technol 44:2161–2168

    Article  CAS  Google Scholar 

  36. Behboudi A, Jafarzadeh Y, Yegani R (2016) Preparation and characterization of TiO2 embedded PVC ultrafiltration membranes. Chem Eng Res Des 114:96–107. https://doi.org/10.1016/j.cherd.2016.07.027

    Article  CAS  Google Scholar 

  37. Gholami A, Moghadassi AR, Hosseini SM et al (2014) Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water. J Ind Eng Chem 20:1517–1522

    Article  CAS  Google Scholar 

  38. Abdel-Azim SM, Aboul-Gheit AK, Ahmed SM et al (2014) Preparation and application of mesoporous nanotitania photocatalysts using different templates and ph media. Int J Photoenergy

  39. Thabet A, Ebnalwaled AA (2017) Improvement of surface energy properties of PVC nanocomposites for enhancing electrical applications. Measurement 110:78–83. https://doi.org/10.1016/j.measurement.2017.06.023

    Article  Google Scholar 

  40. Shaban SM, Aiad I, Ismail AR (2016) Surface parameters and biological activity of N-(3-(dimethyl benzyl ammonio) propyl) alkanamide chloride cationic surfactants. J Surfactants Deterg 19:501–510. https://doi.org/10.1007/s11743-016-1795-x

    Article  CAS  Google Scholar 

  41. Woods GL, Washington JA (1995) Antibacterial susceptibility test: dilution in disk diffusion method. In: Murray PR, Baron EJ, Pfaller MS, Ternover FC, Yolken RH (eds) Manual of clinical microbiology. ASM Press, Washington, DC

    Google Scholar 

  42. Tadic M, Panjan M, Damnjanovic V, Milosevic I (2014) Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Appl Surf Sci 320:183–187. https://doi.org/10.1016/j.apsusc.2014.08.193

    Article  CAS  Google Scholar 

  43. Arefi M, Zarchi S (2013) Synthesis of Zinc Oxide Nanoparticles And Their Effect On The Compressive Strength And Setting Time Of Self-Compacted Concrete Paste As Cementitious Composites. Int J Mol Sci 13:4340–4350

    Article  Google Scholar 

  44. Nguyen VG, Thai H, Mai DH et al (2013) Effect of titanium dioxide on the properties of polyethylene/TiO2 nanocomposites. Compos Part B Eng 45:1192–1198

    Article  CAS  Google Scholar 

  45. Gong F, Feng M, Zhao C et al (2004) Thermal properties of poly(vinyl chloride)/montmorillonite nanocomposites. Polym Degrad Stab 84:289–294. https://doi.org/10.1016/j.polymdegradstab.2003.11.003

    Article  CAS  Google Scholar 

  46. Farid MT, Ahmad I, Aman S et al (2015) Structural, electrical and dielectric behavior of NixCo1−xNdyFe2−yO4 nano-ferrites synthesized by sol-gel method. Dig J Nanomater Biostruct 10:265–275

    Google Scholar 

  47. Zhu J, Zhang X, Haldolaarachchige N et al (2012) Polypyrrole metacomposites with different carbon nanostructures. J Mater Chem 22:4996. https://doi.org/10.1039/c2jm14020a

    Article  CAS  Google Scholar 

  48. Ohlan A, Singh K, Chandra A et al (2009) Conjugated polymer nanocomposites: synthesis, dielectric, and microwave absorption studies. J Appl Phys 106:44305

    Article  Google Scholar 

  49. Bashir T, Shakoor A, Ahmed E et al (2018) Polypyrrole-Fe2O3 nanocomposites with high dielectric constant. In situ chemical polymerisation. Polym Polym Compos 26:233–241

    CAS  Google Scholar 

  50. Dhawan SK, Ohlan A, Singh K (2012) Designing of nano composites of conducting polymers for EMI shielding. Adv Nanocompos—Synth Charact Ind Appl

  51. Abd-El-Messieh SL, Rozik NN, Youssef NF (2019) Eco-friendly composites based on ceramic tiles industrial wastes and acrylonitrile butadiene rubber. Polym Compos 40:544–552

    Article  CAS  Google Scholar 

  52. Reffaee AA, Ward AAM, Abd-El-Messieh SL et al (2017) Structural and physical properties of biowastes filled acrylonitrile butadiene rubber. KGK, Kaut Gummi Kunstst 70:26–33

    CAS  Google Scholar 

  53. Abd El-Messieh SL, Younan SL, F A et al (2018) Ionic conductivity and mechanical Properties of ionic Liquids incorporated PMMA based Polymer Electrolytes.pdf. 26–31

  54. Kamel NA, Soliman AAF, Rozik NN, Abd-El-messieh SL (2018) Biophysical investigation of curcumin based nanocomposite for wound dressing application. J Appl Pharm Sci 8:35–44

    Article  CAS  Google Scholar 

  55. Saleh N, Younan AF, Shafik ES, et al (2018) Mechanical and electrical properties of SBR composite filled with modified magnesium hydroxide by functionalized ionic liquid

  56. Ward AAM (2017) PMMA nanocomposites based on laser fragmented Fe3O4 nanoparticles. KGK, Kaut Gummi Kunstst 70:32–38

    Google Scholar 

  57. Yildiz A, Lisesivdin SB, Kasap M, Mardare D (2008) Electrical properties of TiO2 thin films. J Non Cryst Solids 354:4944–4947. https://doi.org/10.1016/j.jnoncrysol.2008.07.009

    Article  CAS  Google Scholar 

  58. Ondo-Ndong R, Ferblantier G, Pascal-Delannoy F, Boyer A, Foucaran A (2003) Electrical properties of zinc oxide sputtered thin films. Microelectron J 34:1087–1109

    Article  CAS  Google Scholar 

  59. Othman MA, Amat NF, Ahmad BH, Rajan J (2014) Electrical conductivity characteristic of TiO2 nanowires from hydrothermal method. J Phys Conf Ser 495:012027. https://doi.org/10.1088/1742-6596/495/1/012027

    Article  CAS  Google Scholar 

  60. Suman CS, Kumar A, Kumar P (2020) Zn doped α-Fe2O3: an efficient material for UV driven photocatalysis and electrical conductivity. Crystals 10:273

    Article  CAS  Google Scholar 

  61. Huang J (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21:299–313. https://doi.org/10.1002/adv.10025

    Article  CAS  Google Scholar 

  62. Sondi I, Salopek-Sondi B, Škapin SD et al (2011) Colloid-chemical processes in the growth and design of the bio-inorganic aragonite structure in the scleractinian coral Cladocora caespitosa. J Colloid Interface Sci 354:181–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Sadek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadek, E.M., Mansour, N.A., Ahmed, S.M. et al. Synthesis, characterization and applications of poly(vinyl chloride) nanocomposites loaded with metal oxide nanoparticles. Polym. Bull. 78, 5481–5502 (2021). https://doi.org/10.1007/s00289-020-03371-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03371-5

Keywords

Navigation