Skip to main content
Log in

Antioxidant and Antiglycation Activities of Syzygium paniculatum Gaertn and Inhibition of Digestive Enzymes Relevant to Type 2 Diabetes Mellitus

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Advanced glycation end-products (AGEs) may be a contributing factor in the development of diabetes-specific vascular pathologies that affect the retina, glomerulus and peripheral nerves. In this study, Australian native food plant species Syzygium paniculatum was investigated for activities relevant to Type 2 diabetes mellitus including inhibition of α-amylase, α-glucosidase and protein glycation. A methanolic extract of the leaves showed the strongest α-amylase inhibition (IC50 = 14.29 ± 0.82 μg/mL, p < 0.05) when compared with other extracts. For inhibition of α-glucosidase, the strongest inhibition was shown for the water, methanolic and acetone extracts of leaves with IC50 values ranging from 4.73 ± 0.96 to 7.26 ± 0.92 μg/mL. In the BSA-glucose model, fruit and leaf extracts inhibited formation of protein-bound fluorescent AGEs with IC50 values ranging between 11.82 ± 0.71 and 96.80 ± 13.41 μg/mL. Pearson’s correlation analysis showed that the AGE inhibition significantly correlated with DPPH (rp = −0.8964, p < 0.05) and ABTS (rp = −0.8326, p < 0.05). α-amylase inhibitory activities strongly correlated with DPPH (rp = −0.8964, p < 0.001). α-glucosidase inhibition strongly correlated with TPC (rp = −0.9243, p < 0.05), FRAP (rp = −0.9502, p < 0.01), DPPH (rp = −0.9317, p < 0.01) and ABTS (rp = −0.9486, p < 0.01). This study provides a strong rationale for further investigation aimed at isolating and identifying the active compounds responsible for the observed effects on targets relevant to diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. International Diabetes Federation (2019) IDF Diabetes Atlas. 9th edn., Brussels, Belgium

  2. Deo P, Hewawasam E, Karakoulakis A, Claudie DJ, Nelson R, Simpson BS, Smith NM, Semple SJ (2016) In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes. BMC Complement Altern Med 16(1):435. https://doi.org/10.1186/s12906-016-1421-5

  3. Zheng Y, Tian J, Yang W, Chen S, Liu D, Fang H, Zhang H, Ye X (2020) Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chem 317:126346. https://doi.org/10.1016/j.foodchem.2020.126346

    Article  CAS  PubMed  Google Scholar 

  4. Wang X, Liu J, Yang Y, Zhang X (2020) An update on the potential role of advanced glycation end products in glycolipid metabolism. Life Sci 245:117344. https://doi.org/10.1016/j.lfs.2020.117344

    Article  CAS  PubMed  Google Scholar 

  5. Koch ER, Deo P (2016) Nutritional supplements modulate fluorescent protein-bound advanced glycation endproducts and digestive enzymes related to type 2 diabetes mellitus. BMC Complement Altern Med 16(1):338. https://doi.org/10.1186/s12906-016-1329-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 18(1):1–14. https://doi.org/10.4196/kjpp.2014.18.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harris CS, Cuerrier A, Lamont E, Haddad PS, Arnason JT, Bennett SAL, Johns T (2014) Investigating wild berries as a dietary approach to reducing the formation of advanced glycation endproducts: chemical correlates of in vitro antiglycation activity. Plant Foods Hum Nutr 69(1):71–77. https://doi.org/10.1007/s11130-014-0403-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deo P, Chern C, Peake B, Tan S-Y (2020) Non-nutritive sweeteners are in concomitant with the formation of endogenous and exogenous advanced glycation end-products. Int J Food Sci Nutr 71(6):706–714. https://doi.org/10.1080/09637486.2020.1712683

  9. Suantawee T, Wesarachanon K, Anantsuphasak K, Daenphetploy T, Thien-Ngern S, Thilavech T, Pasukamonset P, Ngamukote S, Adisakwattana S (2015) Protein glycation inhibitory activity and antioxidant capacity of clove extract. J Food Sci Technol 52(6):3843–3850. https://doi.org/10.1007/s13197-014-1452-1

    Article  CAS  PubMed  Google Scholar 

  10. Konda PY, Marella S, Natava R, Chippada A (2020) Diabetes affects hepatic and renal glycoproteins: effect of Boswellia ovalifoliolata on glycoproteins proportions in diabetes induced hepatic and renal injury. J Diabetes Metab Disord 19(1):153–162. https://doi.org/10.1007/s40200-020-00487-3

    Article  CAS  PubMed  Google Scholar 

  11. Vuong QV, Hirun S, Chuen TLK, Goldsmith CD, Bowyer MC, Chalmers AC, Phillips PA, Scarlett CJ (2014) Physicochemical composition, antioxidant and anti-proliferative capacity of a lilly pilly (Syzygium paniculatum) extract. J Herb Med 4(3):134–140. https://doi.org/10.1016/j.hermed.2014.04.003

    Article  Google Scholar 

  12. Konczak I, Zabaras D, Dunstan M, Aguas P, Roulfe P, Pavan A (2009) Health benefits of Australian native foods: an evaluation of health-enhancing compounds. RIRDC publication no. 09/133. Accessed from https://nla.gov.au/nla.cat-vn4758859. Rural Industries Research and Development Corporation, Barton, A.C.T

  13. Konda PY, Nagalapuram R, Venkateswarlu JKM, Mohammad SA, Chippada AR (2020) Pathophysiology of STZ-induced pancreatic β cell injury and dysfunction: traditional role of Boswellia ovalifoliolata Bal. & Henry on diabetes and dyslipidemia. Comp Clin Path 29(3):609–619. https://doi.org/10.1007/s00580-020-03096-x

  14. Yellanur Konda P, Egi JY, Dasari S, Katepogu R, Jaiswal KK, Nagarajan P (2020) Ameliorative effects of Mentha aquatica on diabetic and nephroprotective potential activities in STZ-induced renal injury. Comp Clin Path 29(1):189–199. https://doi.org/10.1007/s00580-019-03042-6

    Article  CAS  Google Scholar 

  15. Thurlby K, Connelly C, Wilson P, Rossetto M (2011) Development of microsatellite loci for Syzygium paniculatum (Myrtaceae), a rare polyembryonic rainforest tree. Conserv Genet Resour 3(2):205–208. https://doi.org/10.1007/s12686-010-9323-1

    Article  Google Scholar 

  16. Poiner G (1976) The process of the year among aborigines of the central and south coast of New South Wales. Arch Phys Anthrop Oceania 11(3):186–206. https://doi.org/10.1002/j.1834-4453.1976.tb00250.x

    Article  Google Scholar 

  17. Atlas of Living Australia Syzygium paniculatum Gaertn. https://bie.ala.org.au/species/https://id.biodiversity.org.au/node/apni/2886832#overview. Accessed 22 May 2020

  18. Konda PY, Dasari S, Konanki S, Nagarajan P (2019) In vivo antihyperglycemic, antihyperlipidemic, antioxidative stress and antioxidant potential activities of Syzygium paniculatum Gaertn. in streptozotocin-induced diabetic rats. Heliyon 5(3):e01373. https://doi.org/10.1016/j.heliyon.2019.e01373

  19. Okoh SO, Okoh OO, Okoh AI (2019) Seasonal variation of volatile oil composition and antioxidant property of aerial parts of Syzygium paniculatum Gaertn. grown in the eastern cape, South Africa. Nat Prod Res 33(15):2276–2280. https://doi.org/10.1080/14786419.2018.1497032

  20. Poongunran J, Perera HKI, Jayasinghe L, Fernando IT, Sivakanesan R, Araya H, Fujimoto Y (2017) Bioassay-guided fractionation and identification of α-amylase inhibitors from Syzygium cumini leaves. Pharm Biol 55(1):206–211. https://doi.org/10.1080/13880209.2016.1257031

    Article  CAS  PubMed  Google Scholar 

  21. Syama HP, Arun KB, Sinumol G, Dhanya R, Suseela Anusree S, Nisha P, Ravi Shankar L, Sundaresan A, Jayamurthy P (2018) Syzygium cumini seed exhibits antidiabetic potential via multiple pathways involving inhibition of α-glucosidase, DPP-IV, glycation, and ameliorating glucose uptake in L6 cell lines. J Food Process Preserv 42(2):e13464. https://doi.org/10.1111/jfpp.13464

    Article  CAS  Google Scholar 

  22. Manaharan T, Appleton D, Cheng HM, Palanisamy UD (2012) Flavonoids isolated from Syzygium aqueum leaf extract as potential antihyperglycaemic agents. Food Chem 132(4):1802–1807. https://doi.org/10.1016/j.foodchem.2011.11.147

    Article  CAS  Google Scholar 

  23. Priya SH, Prakasan N, Purushothaman J (2017) Antioxidant activity, phenolic-flavonoid content and high-performance liquid chromatography profiling of three different variants of Syzygium cumini seeds: a comparative study. J Intercult Ethnopharmacol 6(1):107–114. https://doi.org/10.5455/jice.20161229055555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shinde J, Taldone T, Barletta M, Kunaparaju N, Hu B, Kumar S, Placido J, Zito SW (2008) α-Glucosidase inhibitory activity of Syzygium cumini (Linn.) skeels seed kernel in vitro and in Goto–Kakizaki (GK) rats. Carbohydr Res 343(7):1278–1281. https://doi.org/10.1016/j.carres.2008.03.003

  25. Wahjuni S, Wita IW (2017) Hypoglycemic and antioxidant effects of Syzygium polyanthum leaves extract on alloxan induced hyperglycemic Wistar rats. Bali Med J 6:113

    Article  Google Scholar 

  26. Amorati R, Valgimigli L (2015) Advantages and limitations of common testing methods for antioxidants. Free Radic Res 49(5):633–649. https://doi.org/10.3109/10715762.2014.996146

    Article  CAS  PubMed  Google Scholar 

  27. Ruan Z, Zhang L, Lin Y (2008) Evaluation of the antioxidant activity of Syzygium cumini leaves. Molecules 13:2545–2556. https://doi.org/10.3390/molecules13102545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aleksic V, Knezevic P (2014) Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol Res 169(4):240–254. https://doi.org/10.1016/j.micres.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  29. Marmouzi I, Karym EM, Alami R, Jemli ME, Kharbach M, Mamouch F, Faridi B, Attar A, Cherrah Y, Faouzi MEA (2018) Modulatory effect of Syzygium aromaticum and Pelargonium graveolens on oxidative stress and inflammation. Orient Pharm Exp Med 19(2):201–210. https://doi.org/10.1101/362426

    Article  CAS  Google Scholar 

  30. Singh JP, Kaur A, Singh N, Nim L, Shevkani K, Kaur H, Arora DS (2016) In vitro antioxidant and antimicrobial properties of Jambolan (Syzygium cumini) fruit polyphenols. LWT - Food Sci Technol 65:1025–1030. https://doi.org/10.1016/j.lwt.2015.09.038

    Article  CAS  Google Scholar 

  31. Rocchetti G, Lucini L, Ahmed SR, Saber FR (2019) In vitro cytotoxic activity of six Syzygium leaf extracts as related to their phenolic profiles: an untargeted UHPLC-QTOF-MS approach. Food Res Int 126:108715. https://doi.org/10.1016/j.foodres.2019.108715

    Article  CAS  PubMed  Google Scholar 

  32. Oboh G, Ogunsuyi OB, Ogunbadejo MD, Adefegha SA (2016) Influence of gallic acid on alpha-amylase and alpha-glucosidase inhibitory properties of acarbose. J Food Drug Anal 24(3):627–634. https://doi.org/10.1016/j.jfda.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  33. Yeh W-J, Hsia S-M, Lee W-H, Wu C-H (2017) Polyphenols with antiglycation activity and mechanisms of action: a review of recent findings. J Food Drug Anal 25(1):84–92. https://doi.org/10.1016/j.jfda.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  34. Stalin N, Sudhakar Swamy P (2018) Screening of phytochemical and pharmacological activities of Syzygium caryophyllatum (L.) Alston. Clin Phytosci 4 (1):3. https://doi.org/10.1186/s40816-017-0059-2

  35. Wu Q, Li S, Li X, Fu X, Sui Y, Guo T, Xie B, Sun Z (2014) A significant inhibitory effect on advanced glycation end product formation by catechin as the major metabolite of lotus seedpod oligomeric procyanidins. Nutrients 6(8):3230–3244. https://doi.org/10.3390/nu6083230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was supported by the University of South Australia Teaching and Research grant.

Availability of Data and Material

Additional information in the supplementary material.

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Permal Deo.

Ethics declarations

Conflict of Interest/Competing Interests

There is no conflict of interest to declare

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Semple, S.J., Simpson, B.S. et al. Antioxidant and Antiglycation Activities of Syzygium paniculatum Gaertn and Inhibition of Digestive Enzymes Relevant to Type 2 Diabetes Mellitus. Plant Foods Hum Nutr 75, 621–627 (2020). https://doi.org/10.1007/s11130-020-00858-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-020-00858-4

Keywords

Navigation