Skip to main content
Log in

Single image dehazing based on single pixel energy minimization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The common dehazing algorithms always assume that the transmission values of all the pixels in an image block are the same (local consistency assumption). However, it is easy to appear “halo” for image regions where the depth changes obviously. In this paper, we calculate the transmission of each pixel separately without the local consistency assumption. First, we initialize a random transmission value for each pixel in the whole image. Then, we optimize the transmission values through several iterations by minimizing an energy function, which contains the data term and penalty term. In each iteration, we take two procedures of propagation and random search to optimize transmission values. Finally, we use the optimized transmission and the estimated atmospheric light to calculate the haze-free image. Comparison experiments show that our algorithm can remove haze effectively, and obtain the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Berman D, Treibitz T, Avidan TS (2016) Non-local image dehazing. Proc IEEE Conf Comput Vis Pattern Recognit, pp 1674–1682

  2. Bui TM, Kim W (2018) Single image dehazing using color ellipsoid prior. IEEE Trans Image Process 27(2):999–1009

    Article  MathSciNet  Google Scholar 

  3. Carnec M, Le Callet P, Barba D (2008) Objective quality assessment of colour images based on a generic perceptual reduced reference. Signal Process Image Commun 23(4):239–256

    Article  Google Scholar 

  4. Economopoulos TL, Asvestas PA, Matsopoulos GK (2010) Contrast enhancement of images using partitioned iterated function systems. Image Vis Comput 28(1):45–54

    Article  Google Scholar 

  5. Engin D, Genc A, Ekenel HK (2018) Cycle-dehaze: enhanced cyclegan for single image dehazing. Proc IEEE Conf Comput Vis Pattern Recognit Work, In, pp 825–833

    Google Scholar 

  6. Fattal R (2008) Single image dehazing. ACM Trans Graph 27(3):1–10

    Article  Google Scholar 

  7. Gao Y, Chen H, Li H, Zhang W (2018) Single image dehazing using local linear fusion. IET Image Process 12(5):637–643

    Article  Google Scholar 

  8. Hautire N, Tarel JP, Aubert D et al (2008) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal and Stereology J 27(2):87–95

    Article  MathSciNet  Google Scholar 

  9. He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Article  Google Scholar 

  10. Huang D, Chen K, Lu J et al (2017) Single image dehazing based on deep neural network. 2017 Int Conf Comput Network Electron Autom, pp 294–299

  11. Kim JH, Jang WD, Sim JY, Kim CS (2013) Optimized contrast enhancement for real time image and video dehazing. J Vis commun Image Represent 24(3):410–425

    Article  Google Scholar 

  12. Koschmeider H (1924) Therie der horizontalen sichtweite. Beitr Phys Freien Atm 12:171–178

    Google Scholar 

  13. Kratz L, Nishino K (2009) Factorizing scene albedo and depth from a single foggy image. Proceedings of the 12th IEEE International Conference on Computer Vision. IEEE, Kyoto, pp 1701–1708

    Google Scholar 

  14. Li Z, Zheng J (2015) Edge-preserving decomposition-based single image haze removal. IEEE Trans Image Process 24(12):5432–5441

    Article  MathSciNet  Google Scholar 

  15. Li Y, Miao Q, Song J et al (2015) Single image haze removal based on haze physical characteristics and adaptive sky region detection. Neurocomputing 182:221–234

    Article  Google Scholar 

  16. Meng G, Wang Y, Duan J et al (2013) Efficient image dehazing with boundary constraint and contextual regularization. Proc IEEE Int Conf Comput Vis:617–624

  17. Mi Z, Zhou H, Zheng Y et al (2016) Single image dehazing via multi-scale gradient domain contrast enhancement. IET Image Process 10(3):206–214

    Article  Google Scholar 

  18. Narasimhan SG, Nayar SK (2003) Interactive (de) weathering of an image using physical models. Proc IEEE Workshop Colour Photometric Methods Comput Vis 6(6.4):1–8

  19. Rahman Z, Woodell GA, Jobson DJ (1997) Acomparison of the multiscale retinex with other image enhancement techniques. Proc IST 50th Anniversary Conf:1–6

  20. Ren W, Liu S, Zhang H et al (2016) Single image dehazing via multi-scale convolutional neural networks. Eur Conf Comput Vis, In, pp 154–169

    Google Scholar 

  21. Sheikh HR, Bovik AC, Cormack L (2005) No reference quality assessment using natural scene statistics: JPEG2000. IEEE Trans Image Process 14(11):1918–1927

    Article  Google Scholar 

  22. Shwartz S, Namer E, Schechner YY (2006) Blind haze separation, vol 2. Proc. IEEE Comput Soc Conf Comput Vis Pattern Recognit, pp 1984–1991

  23. Song Y, Li J, Wang X et al (2018) Single image dehazing using ranking convolutional neural network. IEEE Trans Multimed 20(6):1548–1560

    Article  Google Scholar 

  24. Tan RT (2008) Visibility in bad weather from a single image. Proc IEEE Conf Comput Vision Pattern Recognit:1–8

  25. Tang K, Yang J, Wang J (2014) Investigating haze-relevant features in a learning framework for image dehazing. Proc IEEE Conf Comput Vis Pattern Recognit, In, pp 2995–3000

    Google Scholar 

  26. Tarel JP, Hautiere N (2009) Fast visibility restoration from a single color or gray level image. IEEE Int Conf Comput Vis, pp:2201–2208

  27. Tripathi AK, Mukhopadhyay S (2012) Removal of fog from images. IETE Tech Review 29(2):148–156

    Article  Google Scholar 

  28. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  29. Wang J, He N, Zhang L, Lu K (2015) Single image dehazing with a physical model and dark channel prior. Neurocomputing 149:718–728

    Article  Google Scholar 

  30. Wang A, Wang W, Liu J, Gu N (2019) AIPNet: image-to-image single image dehazing with atmospheric illumination prior. IEEE Trans Image Process 28(1):381–393

    Article  MathSciNet  Google Scholar 

  31. Zhang H, Patel VM (2018) Densely connected pyramid dehazing network. Proc. IEEE Conf Comput Vis Pattern Recognit, pp 3194–3203

  32. Zhang H, Sindagi V, Patel VM (2018) Multi-scale single image dehazing using perceptual pyramid deep network. IEEE Conf Comput Vis Pattern Recognit Work, In, pp 902–911

    Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Cunjun Xiao for his help in revising this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhang, Y., Li, H. et al. Single image dehazing based on single pixel energy minimization. Multimed Tools Appl 80, 5111–5129 (2021). https://doi.org/10.1007/s11042-020-08964-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08964-w

Keywords

Navigation