Skip to main content
Log in

Analysis of the factors controlling the performance of a photoelectrocatalytic cell separated by UF membrane in degrading methylene blue

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Methylene blue (MB) is a toxic and colorful organic matter that exists in the wastewater of textile industries. Difficult biodegradability of MB causes biological treatment methods that cannot sufficiently biodegrade it. In photoelectrocatalytic (PEC) methods, by converting the radiation energy to the electricity, MB is degraded efficiently in the anolyte chamber. Using the ultrafiltration (UF) membrane rather than a high-priced cation exchange membrane (CEM) decreases the cost of the PEC pilot. Therefore, in this study, different dependent and independent variables that affect the performance of the PEC are investigated to evaluate the technical feasibility of using ultra-filtration membrane as a separator of anode and cathode chambers. The results demonstrate an increase in the anolyte MB concentration up to 15 mg/l augments the PEC performance. In the best condition, the MB, turbidity, and color removal percent are 51.56%, 65.62%, and 64.19%, respectively, and produced power is 1.075 μW when the anolyte MB concentration, the pH, and the illumination density are 15 mg/l, 3, and 12 W, respectively. Also, the results indicate the removal percentage of the MB, turbidity, and color in either anolyte or catholyte rises in the anolyte acidic conditions and higher illumination densities. Besides, the changes in the EC and pH of anode and cathode chambers during the experiment are investigated, and finally, the relations between MB, color, and turbidity removal percentage are evaluated. As a result, it is found that the UF membrane is a suitable candidate to be used in PEC pilots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yuangpho, N., Trinh, D.T.T., Channei, D., Khanitchaidecha, W., Nakaruk, A.: The influence of experimental conditions on photocatalytic degradation of methylene blue using titanium dioxide particle. Australian Ceramic Soc. 54, 557–564 (2018)

    Article  CAS  Google Scholar 

  2. Dariania, R., Esmaeili, A., Mortezaali, A., Dehghanpour, S.: Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik. 127(7), 143–7154 (2016)

    Google Scholar 

  3. Hunge, Y.M.: Photoelectrocatalytic degradation of methylene blue using spray deposited Zno thin films under UV illumination. MOJ Polymer Sci. 1, 4 (2017)

    Google Scholar 

  4. Zhao, Q., Li, Z., Deng, Q., Zhu, L., Luo, S., Li, H.: Paired photoelectrocatalytic reactions of glucose driven by a photoelectrochemical fuel cell with assistance of methylene blue. Electrochim. Acta. 210, 38–44 (2016). https://doi.org/10.1016/j.electacta.2016.05.117

    Article  CAS  Google Scholar 

  5. Momeni, M.M., Ghayeb, Y., Davarzadeh, M.: Single-step electrochemical anodization for synthesis of hierarchical WO3–TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. Electroanal. Chem. 739, 149–155 (2015)

    Article  CAS  Google Scholar 

  6. Pishkar, N., Ghoranneviss, M., Ghorannevis, Z., Akbari, H.: Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization. Physics. 9, 1246–1249 (2018)

    Google Scholar 

  7. Bavykin, D.V., Redmond, K.E., Nias, B.P., Kulak, A.N., Walsh, A.F.C.: The effect of ionic charge on the adsorption of organic dyes onto titanate nanotubes. Aust. J. Chem. 63, 270–275 (2010)

    Article  CAS  Google Scholar 

  8. Zhou, X., Zhou, S., Feng, X.: Optimization of the photoelectrocatalytic oxidation of landfill leachate using copper and nitrate co-doped TiO2 (Ti) by response surface methodology. PLoS One. 12, 7 (2017)

    Google Scholar 

  9. Uddin, M.J., Islam, M.A., Islam, M.A., Hasan, S., Amin, M.S.A., Rahman, M.M.: Preparation of nanostructured TiO2-based photocatalyst by controlling the calcining temperature and pH. Int. Nano Lett. 2, 19 (2012). https://doi.org/10.1186/2228-5326-2-19

    Article  Google Scholar 

  10. Liu, M.T.-H., Zhang, J., Wang, B.: Fabrication of titanium dioxide nanotube photo-electrodes in different electrolyte mixtures and the impacts on their characteristics and photo-catalytic abilities under visible light. Chem. Technol. 19(1), 34–40 (2017)

    Google Scholar 

  11. Fang, T., Yang, C., Liao, L.: Photoelectrocatalytic degradation of high COD dipterex pesticide by using TiO2/Ni photo electrode. Environ. Sci. 24(6), 1149–1156 (2012)

    Article  CAS  Google Scholar 

  12. Zhang, S., Chen, Z., Li, Y., Wang, Q., Wan, L.: Photocatalytic degradation of methylene blue in a sparged tube reactor with TiO2 fibers prepared by a properly two-step method. Catal. Commun. 9, 1178–1183 (2008)

    Article  CAS  Google Scholar 

  13. Yurddaskal, M., Dikici, T., Yildirim, S., Yurddaskal, M., Toparli, M., Celik, E.: Fabrication and characterization of nanostructured anatase TiO2 films prepared by electrochemical anodization and their photocatalytic properties. J. Alloys Compd. 651, 59–71 (2015). https://doi.org/10.1016/j.jallcom.2015.08.064

    Article  CAS  Google Scholar 

  14. Kim, M., Hong, K., Chung, J.G.: Removal of Cu(II) from aqueous solutions byadsorption process with anatase-type titanium dioxide. Water Res. 37, 3524–3529 (2003)

    Article  CAS  Google Scholar 

  15. Lai, C.W., Sreekantan, S.: Preparation of hybrid WO3–TiO2 nanotube photoelectrodes using anodization and wet impregnation: Improved water-splitting hydrogen generation performance. Int. J. Hydrogen Energy. 38(5), 2156–2166 (2012). https://doi.org/10.1016/J.IJHYDENE.2012.12.025

    Article  Google Scholar 

  16. Cui, H., Li, D., Liu, G., Liang, Z., Shi, J.: TiN0.3/CeO2 photo-anode and its photo electrocatalytic performance. Chin. J. Catal. 36, 550–554 (2015)

    Article  CAS  Google Scholar 

  17. Lv, X., Zhang, H., Chang, H.: Improved photocatalytic activity of highly ordered TiO2 nanowire arrays for methylene blue degradation. Mater. Chem. Phys. 138, 789e795 (2012)

    Google Scholar 

  18. Xiao, Q., Zhang, J., Xiao, C., Si, Z., Tan, X.: Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Sol. Energy. 82, 706–713 (2008)

    Article  CAS  Google Scholar 

  19. Rahmaninezhad, S.A., Mehrdadi, N., Mahzari, Z.: Comparison of the ultra-filtration and cation exchange membrane performance in photo electro catalytic degradation of methylene blue. Int. J. Energy Environ. 10(5), 271–280 (2019)

    CAS  Google Scholar 

  20. Rahmaninezhad, S.A., Mehrdadi, N., Mahzari, Z.: Modeling and optimizing the photo-electro-catalytic degradation of methylene blue by response surface methodology. Optik. 202, 163711 (2020). https://doi.org/10.1016/j.ijleo.2019.163711

    Article  CAS  Google Scholar 

  21. Mehanna, M., Saito, T., Yan, J., Hickner, M., Cao, X., Huang, X., Logan, B.: Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ. Sci. 3, 1114–1120 (2010)

    Article  CAS  Google Scholar 

  22. Croese, E., Pereira, M., Euverink, G., Stams, A., Geelhoed, J.: Analysis of themicrobial community of the biocathode of a hydrogen-producing microbial electrolysis cell. Bioenergy Biofuels. 92, 1083–1093 (2011)

    CAS  Google Scholar 

  23. Huang, L., Regan, J., Quan, X.: Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour. Technol. 102, 316–323 (2011)

    Article  CAS  Google Scholar 

  24. Logan, B.E., Rabaey, K.: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science. 337, 686 (2012)

    Article  CAS  Google Scholar 

  25. Powell, E., Mapiour, M., Evitts, R., Hill, G.: Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresour. Technol. 100, 269–274 (2009)

    Article  CAS  Google Scholar 

Download references

Funding

Hormozgan Water and Wastewater Company provided funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Rahmaninezhad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmaninezhad, S.A., Mehrdadi, N. & Mahzari, Z. Analysis of the factors controlling the performance of a photoelectrocatalytic cell separated by UF membrane in degrading methylene blue. J Aust Ceram Soc 57, 163–172 (2021). https://doi.org/10.1007/s41779-020-00518-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00518-5

Keywords

Navigation