Skip to main content
Log in

New green advanced biopolymer as a repairer of aged AA-5083 alloy immersed into dead seawater

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Certainly, inhibitors are widely used to reduce corrosion rates of materials in many corrosive environments. However, when the substrate suffers from aggressive corrosion, inhibition still neither efficient nor cost-effective for the substrate performance. In this study, we test a new green biopolymer (diazonium grafted biosurfactant, noted R11) as a repairer of damage that happens to a 3-years-old AA-5083 bar immersed into Dead Seawater. Mechanism reparation has been detailed. Electrochemical techniques, X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM), were used to study, analyze and confirm the effect of reparation of AA-5083 alloy using the R11 compound. The reparation efficiency reached 96%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Knight SP, Salagaras M, Wythe AM, De Carlo F, Davenport AJ, Trueman AR (2010) In situ X-ray tomography of intergranular corrosion of 2024 and 7050 aluminium alloys. Corros Sci 52:3855–3860. https://doi.org/10.1016/j.corsci.2010.08.026

    Article  CAS  Google Scholar 

  2. DeRose JA, Suter T, Bałkowiec A, Michalski J, Kurzydlowski KJ, Schmutz P (2012) Localised corrosion initiation and microstructural characterisation of an Al 2024 alloy with a higher Cu to Mg ratio Corros. Sci 55:313–325. https://doi.org/10.1016/j.corsci.2011.10.035

    Article  CAS  Google Scholar 

  3. Wang Z, Chen P, Li H, Fang B, Song R, Zheng Z (2017) The intergranular corrosion susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling Corros. Sci 114:156–168. https://doi.org/10.1016/j.corsci.2016.11.013

    Article  CAS  Google Scholar 

  4. Martin FJ, Cheek GT, O’Grady WE, Natishan PM (2005) Impedance studies of the passive film on aluminium. Corros Sci 47:3187–3201. https://doi.org/10.1016/j.corsci.2005.05.058

    Article  CAS  Google Scholar 

  5. Katkar VA, Gunasekaran G, Rao AG, Koli PM (2011) Effect of the reinforced boron carbide particulate content of AA6061 alloy on formation of the passive film in seawater. Corros Sci 53:2700–2712. https://doi.org/10.1016/j.corsci.2011.04.023

    Article  CAS  Google Scholar 

  6. Kaewmaneekul T, Lothongkum G (2013) Effect of aluminium on the passivation of zinc–aluminium alloys in artificial seawater at 80°C. Corros Sci 66:67–77. https://doi.org/10.1016/j.corsci.2012.09.004

    Article  CAS  Google Scholar 

  7. Shukla D, Stimming U (1989) Photoelectrochemical study of passive films on aluminum. Corros Sci 29:1379–1382. https://doi.org/10.1016/0010-938X(89)90126-1

    Article  CAS  Google Scholar 

  8. Aballe A, Bethencourt M, Botana FJ, Cano MJ, Marcos M (2003) Influence of the cathodic intermetallics distribution on the reproducibility of the electrochemical measurements on AA5083 alloy in NaCl solutions. Corros Sci 45:161–180. https://doi.org/10.1016/S0010-938X(02)00067-7

    Article  Google Scholar 

  9. Zhang B, Xu W, Zhu Q, Sun Y, Li Y (2019) Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection. Corros Sci 158:108083. https://doi.org/10.1016/j.corsci.2019.06.031

    Article  CAS  Google Scholar 

  10. Zheng X, Castaneda H, Gao H, Srivastava A (2019) Synergistic effects of corrosion and slow strain rate loading on the mechanical and electrochemical response of an aluminium alloy. Corros Sci 153:53–61. https://doi.org/10.1016/j.corsci.2019.03.018

    Article  CAS  Google Scholar 

  11. Lyndon JA, Gupta RK, Gibson MA, Birbilis N (2013) Electrochemical behaviour of the β-phase intermetallic (Mg2Al3) as a function of pH as relevant to corrosion of aluminium–magnesium alloys. Corros Sci 70:290–293. https://doi.org/10.1016/j.corsci.2012.12.022

    Article  CAS  Google Scholar 

  12. Huang P, Howlett PC, Forsyth M (2014) Electrochemical etching of AA5083 aluminium alloy in trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)amide ionic liquid. Corros Sci 80:120–127. https://doi.org/10.1016/j.corsci.2013.11.014

    Article  CAS  Google Scholar 

  13. Mishra AK, Balasubramaniam R (2007) Corrosion inhibition of aluminum alloy AA 2014 by rare earth chlorides . Corros Sci 49:1027–1044. https://doi.org/10.1016/j.corsci.2006.06.026

    Article  CAS  Google Scholar 

  14. Kharitonov DS, Sommertune J, Örnek C, Ryl J, Kurilo II, Claesson PM, Pan J (2019) Corrosion inhibition of aluminium alloy AA6063-T5 by vanadates: Local surface chemical events elucidated by confocal Raman micro-spectroscopy. Corros Sci 148:237–250. https://doi.org/10.1016/j.corsci.2018.12.011

    Article  CAS  Google Scholar 

  15. Trueba M, Trasatti SP, Flamini DO (2012) The effect of aluminium alloy secondary phases on aniline-based silane protection capacity. Corros Sci 63:59–70. https://doi.org/10.1016/j.corsci.2012.05.028

    Article  CAS  Google Scholar 

  16. Prakashaiah BG, Kumara DV, Pandith AA, Shetty AN, Rani BA (2018) Corrosion inhibition of 2024-T3 aluminum alloy in 3.5% NaCl by thiosemicarbazone derivatives. Corros Sci 136:326–338. https://doi.org/10.1016/j.corsci.2018.03.021

    Article  CAS  Google Scholar 

  17. Mirzakhanzadeh Z, Kosari A, Moayed MH, Naderi R, Taheri P, Mol JMC (2018) Enhanced corrosion protection of mild steel by the synergetic effect of zinc aluminum polyphosphate and 2-mercaptobenzimidazole inhibitors incorporated in epoxy-polyamide coatings. Corros Sci 138:372–379. https://doi.org/10.1016/j.corsci.2018.04.040

    Article  CAS  Google Scholar 

  18. Christodoulou C, Goodier C, Austin S, Webb J, Glass GK (2013) Diagnosing the cause of incipient anodes in repaired reinforced concrete structures. Corros Sci 69:123–129. https://doi.org/10.1016/j.corsci.2012.11.032

    Article  CAS  Google Scholar 

  19. Thomas S, Birbilis N, Venkatraman MS, Cole IS (2013) Self-repairing oxides to protect zinc: Review, discussion and prospects. Corros Sci 69:11–22. https://doi.org/10.1016/j.corsci.2013.01.011

    Article  CAS  Google Scholar 

  20. Sharifalhoseini Z, Entezari MH, Jalal R (2015) Evaluation of antibacterial activity of anticorrosive electroless Ni–P coating against Escherichia coli and its enhancement by deposition of sono-synthesized ZnO nanoparticles. Surf Coat Technol 266:160–166. https://doi.org/10.1016/j.surfcoat.2015.02.035

    Article  CAS  Google Scholar 

  21. Liu H, Xu D, Yang K, Liu H, Cheng YF (2018) Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria. Corros Sci 132:46–55. https://doi.org/10.1016/j.corsci.2017.12.006

    Article  CAS  Google Scholar 

  22. Wang H, Ju LK, Castaneda H, Cheng G, Zhang B (2014) Newby Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans. Corros Sci 89:250–257. https://doi.org/10.1016/j.corsci.2014.09.005

    Article  CAS  Google Scholar 

  23. Volkland H-P, Harms H, Kaufmann K, Wanner O, Zehnder AJB (2001) Repair of damaged vivianite coatings on mild steel using bacteria. Corros Sci 43:2135–2146. https://doi.org/10.1016/S0010-938X(01)00004-X

    Article  CAS  Google Scholar 

  24. Reiss AG, Gavrieli I, Ganor J (2017) The Morphology of Gypsum Precipitated Under Hyper-saline Conditions – Preliminary Results from Dead Sea - Red Sea Mixtures. Procedia Earth Planet Sci 17:376–379. https://doi.org/10.1016/j.proeps.2016.12.095

    Article  Google Scholar 

  25. Oron A, Liphschitz N, Held BW, Galili E, Klein M, Linker R, Blanchette RA (2016) Characterization of archaeological waterlogged wooden objects exposed on the hyper-saline Dead Sea shore. J Archaeol Sci Rep 9:73–86. https://doi.org/10.1016/j.jasrep.2016.06.049

    Article  Google Scholar 

  26. Ezersky MG, Frumkin A (2017) Evaluation and mapping of Dead Sea coastal aquifers salinity using Transient Electromagnetic (TEM) resistivity measurements. Comptes Rendus Geosci 349:1–11. https://doi.org/10.1016/j.crte.2016.08.001

    Article  Google Scholar 

  27. Msaadi R, Ammar S, Chehimi MM, Yagci Y (2017) Diazonium-based ion-imprinted polymer/clay nanocomposite for the selective extraction of lead (II) ions in aqueous media. Eur Polym J 89:367–380. https://doi.org/10.1016/j.eurpolymj.2017.02.029

    Article  CAS  Google Scholar 

  28. Bengamra M, Khlifi A, Ktari N, Mahouche-Chergui S, Carbonnier B, Fourati N, Kalfat R, Chehimi MM (2015) Silanized Aryl Layers through Thiol-yne Photo-click Reaction. Langmuir 31:10717–10724. https://doi.org/10.1021/acs.langmuir.5b02540

    Article  CAS  PubMed  Google Scholar 

  29. Msaadi R, Yilmaz G, Allushi A, Hamadi S, Ammar S, Chehimi MM, Yagci Y (2019) Highly Selective Copper Ion Imprinted Clay/Polymer Nanocomposites Prepared by Visible Light Initiated Radical Photopolymerization. Polymers 11:286. https://doi.org/10.3390/polym11020286

    Article  CAS  PubMed Central  Google Scholar 

  30. Sassi W, Dhouibi L, Hihn J-Y, Berçot P, Rezrazi M, Ammar S (2019) Corrosion Protection of Cu Electrical Cable by W-Ni Composite Coatings Doped with TiO2 Nanoparticles: Influence of Pulse Currents. J Mater Eng Perform. https://doi.org/10.1007/s11665-019-04288-5

    Article  Google Scholar 

  31. Kiro Y, Weinstein Y, Starinsky A, Yechieli Y (2014) The extent of seawater circulation in the aquifer and its role in elemental mass balances: A lesson from the Dead Sea. Earth Planet Sci Lett 394:146–158. https://doi.org/10.1016/j.epsl.2014.03.010

    Article  CAS  Google Scholar 

  32. Kiro Y, Weinstein Y, Starinsky A, Yechieli Y (2013) Groundwater ages and reaction rates during seawater circulation in the Dead Sea aquifer. Geochim Cosmochim Acta 122:17–35. https://doi.org/10.1016/j.gca.2013.08.005

    Article  CAS  Google Scholar 

  33. Nahali H, Ben Mansour H, Dhouibi L, Idrissi H (2017) Effect of Na 3 PO 4 inhibitor on chloride diffusion in mortar. Constr. Build Mater 141:589–597. https://doi.org/10.1016/j.conbuildmat.2017.02.147

    Article  CAS  Google Scholar 

  34. Sassi W, Boubaker H, Bahar S, Othman M, Ghorbal A, Zrelli R, Hihn J-Y (2020) A challenge to succeed the electroplating of nanocomposite Ni–Cr alloy onto porous substrate under ultrasonic waves and from a continuous flow titanium nanofluids. J Alloys Compd 828:154437. https://doi.org/10.1016/j.jallcom.2020.154437

    Article  CAS  Google Scholar 

  35. Tan L, Allen TR (2010) Effect of thermomechanical treatment on the corrosion of AA5083. Corros Sci 52:548–554. https://doi.org/10.1016/j.corsci.2009.10.013

    Article  CAS  Google Scholar 

  36. Aballe A, Bethencourt M, Botana FJ, Cano MJ, Marcos M (2001) Localized alkaline corrosion of alloy AA5083 in neutral 3.5% NaCl solution. Corros Sci 43:1657–1674. https://doi.org/10.1016/S0010-938X(00)00166-9

    Article  CAS  Google Scholar 

  37. Nardeli JV, Fugivara CS, Taryba M, Pinto ERP, Montemor MF, Benedetti AV (2019) Tannin: A natural corrosion inhibitor for aluminum alloys. Prog Org Coat 135:368–381. https://doi.org/10.1016/j.porgcoat.2019.05.035

    Article  CAS  Google Scholar 

  38. D Snihirova SV Lamaka MF Montemor 2016 Smart composite coatings for corrosion protection of aluminium alloys in aerospace applications in: Smart Compos Coat Membr Elsevier 85 121 https://doi.org/10.1016/B978-1-78242-283-9.00004-X.

  39. Nardeli JV, Snihirova DV, Fugivara CS, Montemor MF, Pinto ERP, Messaddecq Y, Benedetti AV (2016) Localised corrosion assessement of crambe-oil-based polyurethane coatings applied on the ASTM 1200 aluminum alloy. Corros Sci 111:422–435. https://doi.org/10.1016/j.corsci.2016.05.034

    Article  CAS  Google Scholar 

  40. Seifi M, Ghamarian I, Samimi P, Collins PC, Holroyd NJH, Lewandowski JJ (2018) Sensitization and remediation effects on environmentally assisted cracking of Al-Mg naval alloys. Corros Sci 138:219–241. https://doi.org/10.1016/j.corsci.2018.03.027

    Article  CAS  Google Scholar 

  41. Mills RJ, Lattimer BY, Case SW, Mouritz AP (2018) The influence of sensitization and corrosion on creep of 5083–H116. Corros Sci 143:1–9. https://doi.org/10.1016/j.corsci.2018.07.036

    Article  CAS  Google Scholar 

  42. Khan S, Manjunatha KG (2018) Comparison of Pitting Corrosive Behaviour of as Casted and Heat Treated Al6061-SiC Metal Matrix Composite in Various Medium by Weight Loss Method. Mater Today Proc 5:22517–22525. https://doi.org/10.1016/j.matpr.2018.06.623

    Article  CAS  Google Scholar 

  43. Vasudevan N, Bhaskar GB, Prasad AR, Suresh SM (2019) Corrosion study on AA5083 aluminum alloy - boron carbide composite. Mater Today Proc 16:1124–1129. https://doi.org/10.1016/j.matpr.2019.05.204

    Article  CAS  Google Scholar 

  44. Figueroa R, Nóvoa XR, Pérez C (2019) Hydrophobic surface treatments for improving the corrosion resistance of anodized AA2024-T3 alloys. Electrochim Acta 303:56–66. https://doi.org/10.1016/j.electacta.2019.02.034

    Article  CAS  Google Scholar 

  45. Queiroz FM, Donatus U, Ramirez OMP, de Sousa Araujo JV, de Viveiros BVG, Lamaka S, Zheludkevich M, Masoumi M, Vivier V, Costa I, de Melo HG (2019) Effect of unequal levels of deformation and fragmentation on the electrochemical response of friction stir welded AA2024-T3 alloy. Electrochim Acta 313:271–281. https://doi.org/10.1016/j.electacta.2019.04.137

    Article  CAS  Google Scholar 

  46. Rodič P, Milošev I, Lekka M, Andreatta F, Fedrizzi L (2019) Study of the synergistic effect of cerium acetate and sodium sulphate on the corrosion inhibition of AA2024-T3. Electrochim Acta 308:337–349. https://doi.org/10.1016/j.electacta.2019.04.042

    Article  CAS  Google Scholar 

  47. Nahali H, Dhouibi L, Idrissi H (2014) Effect of phosphate based inhibitor on the threshold chloride to initiate steel corrosion in saturated hydroxide solution. Constr Build Mater 50:87–94. https://doi.org/10.1016/j.conbuildmat.2013.08.054

    Article  Google Scholar 

  48. Plawecka M, Snihirova D, Martins B, Szczepanowicz K, Warszynski P, Montemor MF (2014) Self healing ability of inhibitor-containing nanocapsules loaded in epoxy coatings applied on aluminium 5083 and galvanneal substrates. Electrochim Acta 140:282–293. https://doi.org/10.1016/j.electacta.2014.04.035

    Article  CAS  Google Scholar 

  49. R. Sharma, A.K. Singh, A. Arora, S. Pati, P.S. De, Effect of friction stir processing on corrosion of Al-TiB2 based composite in 3.5 wt.% sodium chloride solution, Trans. Nonferrous Met. Soc. China. 29 (2019) 1383–1392. https://doi.org/https://doi.org/10.1016/S1003-6326(19)65045-4.

  50. da Silva FS, Cinca N, Dosta S, Cano IG, Couto M, Guilemany JM, Benedetti AV (2018) Corrosion behavior of WC-Co coatings deposited by cold gas spray onto AA 7075–T6. Corros Sci 136:231–243. https://doi.org/10.1016/j.corsci.2018.03.010

    Article  CAS  Google Scholar 

  51. Verdalet-Guardiola X, Fori B, Bonino J-P, Duluard S, Blanc C (2019) Nucleation and growth mechanisms of trivalent chromium conversion coatings on 2024–T3 aluminium alloy. Corros Sci 155:109–120. https://doi.org/10.1016/j.corsci.2019.04.035

    Article  CAS  Google Scholar 

  52. Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci 257:887–898. https://doi.org/10.1016/j.apsusc.2010.07.086

    Article  CAS  Google Scholar 

  53. Fu Y, Yang Y, Xiao S, Zhang L, Huang L, Chen F, Fan P, Zhong M, Tan J, Yang J (2019) Mixed polymer brushes with integrated antibacterial and antifouling properties. Prog Org Coat 130:75–82. https://doi.org/10.1016/j.porgcoat.2019.01.038

    Article  CAS  Google Scholar 

  54. Gerchman D, Bones B, Pereira MB, Takimi AS (2019) Thin film deposition by plasma polymerization using d-limonene as a renewable precursor. Prog Org Coat 129:133–139. https://doi.org/10.1016/j.porgcoat.2019.01.018

    Article  CAS  Google Scholar 

  55. Putz B, Milassin G, Butenko Y, Völker B, Gammer C, Semprimoschnig C, Cordill MJ (2017) Combined TEM and XPS studies of metal - polymer interfaces for space applications. Surf Coat Technol 332:368–375. https://doi.org/10.1016/j.surfcoat.2017.07.079

    Article  CAS  Google Scholar 

  56. Howell C, Maul R, Wenzel W, Koelsch P (2010) Interactions of hydrophobic and hydrophilic self-assembled monolayers with water as probed by sum-frequency-generation spectroscopy. Chem Phys Lett 494:193–197. https://doi.org/10.1016/j.cplett.2010.06.008

    Article  CAS  Google Scholar 

  57. Zhang R, Zhang Y, Yan Y, Thomas S, Davies CHJ, Birbilis N (2017) The effect of reversion heat treatment on the degree of sensitisation for aluminium alloy AA5083. Corros Sci 126:324–333. https://doi.org/10.1016/j.corsci.2017.07.015

    Article  CAS  Google Scholar 

  58. Aballe A, Bethencourt M, Botana FJ, Marcos M, Sánchez-Amaya JM (2004) Influence of the degree of polishing of alloy AA 5083 on its behaviour against localised alkaline corrosion. Corros Sci 46:1909–1920. https://doi.org/10.1016/j.corsci.2003.10.028

    Article  CAS  Google Scholar 

  59. Davoodi A, Esfahani Z, Sarvghad M (2016) Microstructure and corrosion characterization of the interfacial region in dissimilar friction stir welded AA5083 to AA7023. Corros Sci 107:133–144. https://doi.org/10.1016/j.corsci.2016.02.027

    Article  CAS  Google Scholar 

  60. S. Abbasi, M. Nouri, A. Sabour Rouhaghdam, A novel combined method for fabrication of stable corrosion resistance superhydrophobic surface on Al alloy, Corros. Sci. (2019) 108144. https://doi.org/https://doi.org/10.1016/j.corsci.2019.108144.

  61. Mrad M, Amor YB, Dhouibi L, Montemor F (2017) Electrochemical study of polyaniline coating electropolymerized onto AA2024-T3 aluminium alloy: Physical properties and anticorrosion performance. Synth Met 234:145–153. https://doi.org/10.1016/j.synthmet.2017.11.002

    Article  CAS  Google Scholar 

  62. Williams G, McMurray HN (2009) Polyaniline inhibition of filiform corrosion on organic coated AA2024-T3. Electrochim Acta 54:4245–4252. https://doi.org/10.1016/j.electacta.2009.02.077

    Article  CAS  Google Scholar 

  63. Gupta G, Birbilis N, Cook AB, Khanna AS (2013) Polyaniline-lignosulfonate/epoxy coating for corrosion protection of AA2024-T3. Corros Sci 67:256–267. https://doi.org/10.1016/j.corsci.2012.10.022

    Article  CAS  Google Scholar 

  64. Mrad M, Amor YB, Dhouibi L, Montemor MF (2018) Corrosion prevention of AA2024-T3 aluminum alloy with a polyaniline/poly(γ-glycidoxypropyltrimethoxysilane) bi-layer coating: Comparative study with polyaniline mono-layer feature. Surf. Coat. Technol 337:1–11. https://doi.org/10.1016/j.surfcoat.2017.12.053

    Article  CAS  Google Scholar 

  65. Murata J, Nishiguchi Y, Iwasaki T (2018) Liquid electrolyte-free electrochemical oxidation of GaN surface using a solid polymer electrolyte toward electrochemical mechanical polishing. Electrochem Commun 97:110–113. https://doi.org/10.1016/j.elecom.2018.11.006

    Article  CAS  Google Scholar 

  66. Sassi W, Dhouibi L, Berçot P, Rezrazi M, Triki E (2012) Effect of pyridine on the electrocrystallization and corrosion behavior of Ni–W alloy coated from citrate–ammonia media. Appl Surf Sci 263:373–381. https://doi.org/10.1016/j.apsusc.2012.09.065

    Article  CAS  Google Scholar 

  67. Bai X, Tran TH, Yu D, Vimalanandan A, Hu X, Rohwerder M (2015) Novel conducting polymer based composite coatings for corrosion protection of zinc. Corros Sci 95:110–116. https://doi.org/10.1016/j.corsci.2015.03.003

    Article  CAS  Google Scholar 

  68. Pan Y, Wu G, Huang Z, Wu X, Liu Y, Ye H (2017) Corrosion behaviour of carbon fibre reinforced polymer/magnesium alloy hybrid laminates. Corros Sci 115:152–158. https://doi.org/10.1016/j.corsci.2016.11.022

    Article  CAS  Google Scholar 

  69. Palomino LM, Suegama PH, Aoki IV, Montemor MF, De Melo HG (2009) Electrochemical study of modified cerium–silane bi-layer on Al alloy 2024–T3. Corros Sci 51:1238–1250. https://doi.org/10.1016/j.corsci.2009.03.012

    Article  CAS  Google Scholar 

  70. Snihirova D, Lamaka SV, Taheri P, Mol JMC, Montemor MF (2016) Comparison of the synergistic effects of inhibitor mixtures tailored for enhanced corrosion protection of bare and coated AA2024-T3. Surf Coat Technol 303:342–351. https://doi.org/10.1016/j.surfcoat.2015.10.075

    Article  CAS  Google Scholar 

  71. Martins NCT, e Silva TM, Montemor MF, Fernandes JCS, Ferreira MGS (2008) Electrodeposition and characterization of polypyrrole films on aluminium alloy 6061-T6. Electrochim Acta 53:4754–4763. https://doi.org/10.1016/j.electacta.2008.01.059

    Article  CAS  Google Scholar 

  72. Cabral AM, Duarte RG, Montemor MF, Ferreira MGS (2005) A comparative study on the corrosion resistance of AA2024-T3 substrates pre-treated with different silane solutions. Prog Org Coat 54:322–331. https://doi.org/10.1016/j.porgcoat.2005.08.001

    Article  CAS  Google Scholar 

  73. Amor YB, Sutter E, Takenouti H, Tribollet B, Boinet M, Faure R, Balencie J, Durieu G (2014) Electrochemical study of the tarnish layer of silver deposited on glass. Electrochim Acta 131:89–95. https://doi.org/10.1016/j.electacta.2013.12.011

    Article  CAS  Google Scholar 

  74. Amor YB, Bousselmi L, Tribollet B, Triki E (2010) Study of the effect of magnesium concentration on the deposit of allotropic forms of calcium carbonate and related carbon steel interface behavior. Electrochim Acta 55:4820–4826. https://doi.org/10.1016/j.electacta.2010.01.109

    Article  CAS  Google Scholar 

  75. Sci-Hub | Performance of Mg-Sn surface alloys for the sacrificial cathodic protection of Mg alloy AZ31B-H24. Corrosion Science | https://doi.org/10.1016/j.corsci.2019.01.015, (n.d.). https://sci-hub.se/https://doi.org/10.1016/j.corsci.2019.01.015 (accessed January 7, 2020).

  76. W. Sassi, L. Dhouibi, P. Berçot, M. Rezrazi, Sensitivity of the Ni-W nanocomposite doped amorphous nano-SiO2 particles to the electrolysis pH, (2015) 5.

  77. M. Lavanya, V.R. Murthy, P. Rao, Erosion corrosion control of 6061 aluminum alloy in multi-phase jet impingement conditions with eco-friendly green inhibitor, Chin. J. Chem. Eng. (2019) S1004954119308134. https://doi.org/https://doi.org/10.1016/j.cjche.2019.07.016.

  78. O.D. Olakolegan, S.S. Owoeye, E.A. Oladimeji, O.T. Sanya, Green synthesis of Terminalia Glaucescens Planch (Udi plant roots) extracts as green inhibitor for aluminum (6063) alloy in acidic and marine environment, J. King Saud Univ. - Sci. (2019) S1018364719318142. https://doi.org/https://doi.org/10.1016/j.jksus.2019.11.010.

  79. Nathiya RS, Perumal S, Murugesan V, Raj V (2019) Evaluation of extracts of Borassus flabellifer dust as green inhibitors for aluminium corrosion in acidic media. Mater Sci Semicond Process 104:104674. https://doi.org/10.1016/j.mssp.2019.104674

    Article  CAS  Google Scholar 

  80. Du Y-T, Wang H-L, Chen Y-R, Qi H-P, Jiang W-F (2017) Synthesis of baicalin derivatives as eco-friendly green corrosion inhibitors for aluminum in hydrochloric acid solution. J Environ Chem Eng 5:5891–5901. https://doi.org/10.1016/j.jece.2017.11.004

    Article  CAS  Google Scholar 

  81. M. Beniken, M. Driouch, M. Sfaira, B. Hammouti, M. Ebn Touhami, M. Mohsin, Kinetic–Thermodynamic Properties of a Polyacrylamide on Corrosion Inhibition for C-Steel in 1.0 M HCl Medium: Part 2, J. Bio- Tribo-Corros. 4 (2018) 34. https://doi.org/https://doi.org/10.1007/s40735-018-0152-1.

  82. Bentiss F, Lebrini M, Lagrenée M (2005) Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system. Corros Sci 47:2915–2931. https://doi.org/10.1016/j.corsci.2005.05.034

    Article  CAS  Google Scholar 

  83. Bouklah M, Hammouti B, Lagrenée M, Bentiss F (2006) Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium. Corros Sci 48:2831–2842. https://doi.org/10.1016/j.corsci.2005.08.019

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Laurent Akrour, Electrochemistry Product Manager at Metrohm France SAS for his availability and help to improve the electrochemical reactor. We would like to thank finally the Tunisian National Oil Company (ETAP), the maintenance mission delegate of the multinational Lundin Petroleum company for samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa Sassi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sassi, W., Zrelli, R., Hihn, JY. et al. New green advanced biopolymer as a repairer of aged AA-5083 alloy immersed into dead seawater. J Polym Res 27, 323 (2020). https://doi.org/10.1007/s10965-020-02300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02300-4

Keywords

Navigation