Skip to main content
Log in

Trudinger–Moser Type Inequalities with Vanishing Weights in the Unit Ball

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Let \(\mathbf{B} \) denote the unit ball in \({\mathbb {R}}^n\) with \(n\ge 2\). In this paper, we present the balance conditions on the nonlinearity function F and the weight function h such that the weighted Trudinger–Moser type inequalities

$$\begin{aligned} \sup _{u \in W^{1,n}_{0}(\mathbf{B }),\, u \text { is radial}, \Vert \nabla u\Vert _{L^n(\mathbf{B })} \le 1} \int _{\mathbf{B }} F(u) h(|x|) dx < \infty \end{aligned}$$

holds. We also study the attainability of these inequalities. These results generalizes the ones obtained by De Figueiredo et al. [15] to the higher dimension \(n\ge 3\) as well as weaken the conditions on F and h given in [15]. Our results also extend the ones of Yang and Zhu [29] to more general cases of the nonlinearity function F and the weight function h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi, S., Tanaka, K.: Trudinger type inequalities in \({\mathbb{R}}^N\) and their best exponents. Proc. Am. Math. Soc. 128(7), 2051–2057 (2000)

    Article  Google Scholar 

  2. Adimurthi, Druet, O.: Blow-up analysis in dimension \(2\) and a sharp form of Trudinger–Moser inequality. Commun. Partial Differ. Equ. 29(1–2), 295–322 (2004)

  3. Adimurthi, Sandeep, K.: A singular Moser–Trudinger embedding and its applications. NoDEA Nonlinear Differ. Equ. Appl. 13(5–6), 585–603 (2007)

  4. Adimurthi, do Ó, J.M., Tintarev, C.: Cocompactness and minimizers for inequalities of Hardy–Sobolev type involving \(N\)-Laplacian. NoDEA Nonlinear Differ. Equ. Appl. 17(4), 467–477 (2010)

  5. Adimurthi, Yang, Y.: An interpolation of Hardy inequality and Trudinger–Moser inequality in \({\mathbb{R}}^N\) and its applications. Int. Math. Res. Not. 13, 2394–2426 (2010)

  6. Bonheure, D., Serra, E., Tarallo, M.: Symmetry of extremal functions in Moser–Trudinger inequalities and a Hénon type problem in dimension two. Adv. Differ. Equ. 13, 105–138 (2008)

    MATH  Google Scholar 

  7. Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 348, 153–179 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Calanchi, M., Terraneo, E.: Non-radial maximizers for functionals with exponential non-linearity in \({\mathbb{R}}^2\). Adv. Nonlinear Stud. 5, 337–350 (2005)

    Article  MathSciNet  Google Scholar 

  9. Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of. J. Moser. Bull. Sci. Math. 110, 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Černy, R., Cianchi, A., Hencl, S.: Concentration–compactness principles for Moser–Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (4), 192 (2013), no. 2, 225–243

  11. Csató, G., Roy, P.: Extremal functions for the singular Moser–Trudinger inequality in \(2\) dimensions. Calc. Var. Partial Differ. Equ. 54(2), 2341–2366 (2015)

    Article  MathSciNet  Google Scholar 

  12. Csató, G., Roy, P.: Singular Moser–Trudinger inequality on simply connected domains. Commun. Partial Differ. Equ. 41(5), 838–847 (2016)

    Article  MathSciNet  Google Scholar 

  13. Csató, G., Nguyen, V.H., Roy, P.: Extremals for the singular Moser-Trudinger inequality via \(n\)-harmonic transplantation. J. Differ. Equ. 270, 843–882 (2020). https://doi.org/10.1016/j.jde.2020.08.005

    Article  MathSciNet  Google Scholar 

  14. De Figueiredo, D. G., do Ó, J. M., Ruf, B.: On an inequality by N. Trudinger and J. Moser and related elliptic equations. Commun. Pure Appl. Math. 55(2), 135–152 (2002)

  15. De Figueiredo, D. G., do Ó, J. M., Dos Santos, E. M.: Trudinger–Moser inequalities involving fast growth and weights with strong vanishing at zero. Proc. Am. Math. Soc. 144(8), 3369–3380 (2016)

  16. Flucher, M.: Extremal functions for the Trudinger-Moser inequality in \(2\) dimensions Comment. Math. Helv. 67, 471–497 (1992)

    Article  MathSciNet  Google Scholar 

  17. Iula, S., Mancini, G.: Extremal functions for singular Moser-Trudinger embeddings. Nonlinear Anal. 156, 215–248 (2017)

    Article  MathSciNet  Google Scholar 

  18. Li, Y., Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in \({\mathbb{R}}^n\). Indiana Univ. Math. J. 57, 451–480 (2008)

    Article  MathSciNet  Google Scholar 

  19. Lin, K.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)

    Article  MathSciNet  Google Scholar 

  20. Lions, P. L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoam. 1 45-121 (1985)

  21. Moser, J.: A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20, 1077–1092 (1970/1971)

  22. Nguyen, V.H.: Improved Moser–Trudinger inequality of Tintarev type in dimension \(n\) and the existence of its extremal functions. Ann. Glob. Anal. Geom. 54(2), 237–256 (2018)

    Article  MathSciNet  Google Scholar 

  23. Pohožaev, S.I.: On the eigenfunctions of the equation \(\Delta u + \lambda f(u) = 0\) (Russian). Dokl. Akad. Nauk. SSSR 165, 36–39 (1965)

    MathSciNet  Google Scholar 

  24. Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in \({\mathbb{R}}^2\). J. Funct. Anal. 219(2), 340–367 (2005)

    Article  MathSciNet  Google Scholar 

  25. Tintarev, C.: Trudinger-Moser inequality with remainder terms. J. Funct. Anal. 266, 55–66 (2014)

    Article  MathSciNet  Google Scholar 

  26. Trudinger, N.S.: On imbedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  27. Yang, Y.: A sharp form of Moser–Trudinger inequality in high dimension. J. Funct. Anal. 239(1), 100–126 (2006)

    Article  MathSciNet  Google Scholar 

  28. Yang, Y., Zhu, X.: Blow-up analysis concerning singular Trudinger–Moser inequalities in dimension two. J. Funct. Anal. 272, 3347–3374 (2017)

    Article  MathSciNet  Google Scholar 

  29. Yang, Y., Zhu, X.: A Trudinger–Moser inequality for a conical metric in the unit ball. Arch. Math. (Basel) 112(5), 531–545 (2019)

    Article  MathSciNet  Google Scholar 

  30. Yudovič, V. I.: Some estimates connected with integral operators and with solutions of elliptic equations (Russian). Dokl. Akad. Nauk. SSSR 138, 805–808 (1961)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Hoang Nguyen.

Additional information

Communicated by Luis Vega.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.H. Trudinger–Moser Type Inequalities with Vanishing Weights in the Unit Ball. J Fourier Anal Appl 26, 77 (2020). https://doi.org/10.1007/s00041-020-09789-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-020-09789-9

Keywords

Mathematics Subject Classification

Navigation