Skip to main content
Log in

Adsorption of methylene blue dye from aqueous solution by a novel PVA/CMC/halloysite nanoclay bio composite: Characterization, kinetics, isotherm and antibacterial properties

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Here the fabrication of a novel PVA/CMC/halloysite nanoclay membrane for the effective adsorption of cationic dye (methylene blue, MB) from aqueous environment is reported. The membranes were analyzed through scanning electron microscopy (SEM), optical microscopy (OM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), contact angle and universal testing machine (UTM) analysis. The adsorption behavior of the membrane in terms of nanoclay loading, contact time, initial concentration of MB, pH and temperature were also discussed. The membrane exhibits excellent removal efficiency (99.5%) for MB in the optimal conditions such as nanoclay dose = 6 wt%, initial dye concentration = 10 ppm, contact time = 240 min, pH = 10 and temperature = 30 °C. Three isotherm models (Freundlich, Langmuir and Temkin) were employed to analyze the dye adsorption data. The results revealed that the adsorption process could be described well with both Freundlich and Langmuir isotherm model. The kinetics of MB adsorption onto membrane follows pseudo-second-order model while thermodynamic parameter indicate that adsorption is feasible and endothermic in nature. The antibacterial studies revealed that the PVA/CMC/halloysite nanoclay membrane possess notable antibacterial property. Finally, the desorption studies showed that the membrane have good reusability even after four recycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Acher A, Fischer E, Turnheim R, Manor Y. Ecologically friendly wastewater disinfection techniques. Water Res. 1997;31(6):1398–404.

    CAS  Google Scholar 

  2. Adeyemo AA, Adeoye IO, Bello OS. Adsorption of dyes using different types of clay: a review. Appl Water Sci. 2015;7(2):543–68.

    Google Scholar 

  3. Afroze S, Sen TK, Ang M, Nishioka H. Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathianabark: equilibrium, kinetics, thermodynamics and mechanism. Desalin Water Treat. 2015;57(13):5858–78.

    Google Scholar 

  4. Afshin S, Mokhtari SA, Vosoughi M, Sadeghi H, Rashtbari Y. Data of adsorption of basic blue 41 dye from aqueous solutions by activated carbon prepared from filamentous algae. Data Brief. 2018;21:1008–13.

  5. Afshin S, Rashtbari Y, Ramavandi B, Fazlzadeh M, Vosoughi M, Mokhtari SA, et al. Magnetic nanocomposite of filamentous algae activated carbon for efficient elimination of cephalexin from aqueous media. Korean J Chem Eng. 2020;37(1):80–92.

    CAS  Google Scholar 

  6. Ahmadi E, Kakavandi B, Azari A, Izanloo H, Gharibi H, Mahvi AH, et al. The performance of mesoporous magnetite zeolite nanocomposite in removing dimethyl phthalate from aquatic environments. Desalin Water Treat. 2016:1–15.

  7. Ahmadi E, Yousefzadeh S, Ansari M, Ghaffari HR, Azari A, Miri M, et al. Performance, kinetic, and biodegradation pathway evaluation of anaerobic fixed film fixed bed reactor in removing phthalic acid esters from wastewater. Sci Rep. 2017;7(1).

  8. Ali I, Asim M, Khan TA. Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manag. 2012;113:170–83.

    CAS  Google Scholar 

  9. Alipour M, Vosoughi M, Mokhtari SA, Sadeghi H, Rashtbari Y, Shirmardi M, et al. Optimising the basic violet 16 adsorption from aqueous solutions by magnetic graphene oxide using the response surface model based on the box–Behnken design. Int J Environ Anal Chem. 2019:1–20.

  10. Alizadeh S, Sadeghi H, Vosoughi M, Dargahi A, Mokhtari SA. Removal of humic acid from aqueous media using Sono-Persulphate process: optimization and modelling with response surface methodology (RSM). Int J Environ Anal Chem. 2020:1–15.

  11. Aluigi A, Rombaldoni F, Tonetti C, Jannoke L. Study of methylene blue adsorption on keratin nanofibrous membranes. J Hazard Mater. 2014;268:156–65.

    CAS  Google Scholar 

  12. Aravind P, Selvaraj H, Ferro S, Sundaram M. An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: understanding the degradation mechanism and toxicity assessment. J Hazard Mater. 2016;318:203–15.

    CAS  Google Scholar 

  13. Baheri B, Ghahremani R, Peydayesh M, Shahverdi M, Mohammadi T. Dye removal using 4A-zeolite/polyvinyl alcohol mixed matrix membrane adsorbents: preparation, characterization, adsorption, kinetics, and thermodynamics. Res Chem Intermed. 2015;42(6):5309–28.

    Google Scholar 

  14. Banerjee S, Chattopadhyaya MC. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem. 2017;10:S1629–38.

    CAS  Google Scholar 

  15. Barbosa AD, da Silva LF, de Paula HM, Romualdo LL, Sadoyama G, Andrade LS. Combined use of coagulation (M. oleifera) and electrochemical techniques in the treatment of industrial paint wastewater for reuse and/or disposal. Water Res. 2018;145:153–61.

    CAS  Google Scholar 

  16. Bayat M, Javanbakht V, Esmaili J. Synthesis of zeolite/nickel ferrite/sodium alginate bionanocomposite via a co-precipitation technique for efficient removal of water-soluble methylene blue dye. Int J Biol Macromol. 2018;116:607–19.

    CAS  Google Scholar 

  17. Bediako EG, Nyankson E, Dodoo-Arhin D, Agyei-Tuffour B, Łukowiec D, Tomiczek B, et al. Modified halloysite nanoclay as a vehicle for sustained drug delivery. Heliyon. 2018;4(7):e00689.

    Google Scholar 

  18. Bhardwaj A, Hossain SKS, Majhi MR. Preparation and characterization of clay bonded high strength silica refractory by utilizing agriculture waste. Bol Soc Esp Ceram V. 2017;56(6):256–62.

  19. Bhatti HN, Safa Y, Yakout SM, Shair OH, Iqbal M, Nazir A. Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies. Int J Biol Macromol. 2020;150:861–70.

    CAS  Google Scholar 

  20. Bielska M, Szymanowski J. Removal of methylene blue from waste water using micellar enhanced ultrafiltration. Water Res. 2006;40(5):1027–33.

    CAS  Google Scholar 

  21. Bouaziz F, Koubaa M, Kallel F, Chaari F, Driss D, Ghorbel RE, et al. Efficiency of almond gum as a low-cost adsorbent for methylene blue dye removal from aqueous solutions. Ind Crop Prod. 2015;74:903–11.

    CAS  Google Scholar 

  22. Castronovo S, Wick A, Scheurer M, Nödler K, Schulz M, Ternes TA. Biodegradation of the artificial sweetener acesulfame in biological wastewater treatment and sandfilters. Water Res. 2017;110:342–53.

    CAS  Google Scholar 

  23. Che Ramli ZA, Asim N, Isahak WNRW, Emdadi Z, Ahmad-Ludin N, Yarmo MA, et al. Photocatalytic degradation of methylene blue under UV light irradiation on prepared CarbonaceousTiO2. Sci World J. 2014;2014:1–8.

    Google Scholar 

  24. Chen Y, Zhang Y, Liu J, Zhang H, Wang K. Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions. Chem Eng J. 2012;210:298–308.

    CAS  Google Scholar 

  25. Dai H, Huang Y, Huang H. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr Polym. 2018;185:1–11.

    Google Scholar 

  26. Daneshvar E, Vazirzadeh A, Niazi A, Kousha M, Naushad M, Bhatnagar A. Desorption of methylene blue dye from brown macroalga: effects of operating parameters, isotherm study and kinetic modeling. J Clean Prod. 2017;152:443–53.

    CAS  Google Scholar 

  27. Diagboya PN, Dikio ED. Scavenging of aqueous toxic organic and inorganic cations using novel facile magneto-carbon black-clay composite adsorbent. J Clean Prod. 2018;180:71–80.

    CAS  Google Scholar 

  28. Duman O, Polat TG, Diker CÖ, Tunç S. Agar/κ-carrageenan composite hydrogel adsorbent for the removal of methylene blue from water. Int J Biol Macromol. 2020;160:823–35.

    CAS  Google Scholar 

  29. Edathil AA, Pal P, Banat F. Alginate clay hybrid composite adsorbents for the reclamation of industrial lean methyldiethanolamine solutions. Appl Clay Sci. 2018;156:213–23.

    CAS  Google Scholar 

  30. El Shahawy A, Heikal G. Organic pollutants removal from oily wastewater using clean technology economically, friendly biosorbent (Phragmites australis). Ecol Eng. 2018;122:207–18.

    Google Scholar 

  31. El-Shamy AG. An efficient removal of methylene blue dye by adsorption onto carbon dot @ zinc peroxide embedded poly vinyl alcohol (PVA/CZnO2) nano-composite: a novel reusable adsorbent. Polymer. 2020;202:122565.

    CAS  Google Scholar 

  32. Falcón JM, Sawczen T, Aoki IV. Dodecylamine-loaded halloysite nanocontainers for active anticorrosion coatings. Front Mater. 2015;2.

  33. Farzadnia N, Abang Ali AA, Demirboga R, Anwar MP. Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars. Cement and Concrete Research. 2013;48:97–104.

    CAS  Google Scholar 

  34. Goluboff N, Wheaton R. Methylene blue induced cyanosis and acutehemolytic anemia complicating the treatment of methemoglobinemia. J Pediatr. 1961;58(1):86–9.

    CAS  Google Scholar 

  35. Gu S, Kang X, Wang L, Lichtfouse E, Wang C. Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environ Chem Lett. 2018;17(2):629–54.

    Google Scholar 

  36. Güler M, Çetintaş S, Bingöl D. Cinnamon bark as low-cost and eco-friendly adsorbent for the removal of indigo carmine and malachite green dyestuffs. Int J Environ Anal Chem. 2019:1–23.

  37. Gupta N, Kushwaha AK, Chattopadhyaya MC. Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab J Chem. 2016;9:S707–16.

    CAS  Google Scholar 

  38. Hajjaji W, Pullar RC, Labrincha JA, Rocha F. Aqueous acid Orange 7 dye removal by clay and red mud mixes. Appl Clay Sci. 2016;126:197–206.

    CAS  Google Scholar 

  39. Hameed BH, Ahmad AL, Latiff KNA. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigments. 2007;75(1):143–9.

    CAS  Google Scholar 

  40. Haouzi P, Gueguinou M, Sonobe T, Judenherc-Haouzi A, Tubbs N, Trebak M, et al. Revisiting the physiological effects of methylene blue as a treatment of cyanide intoxication. Clin Toxicol. 2018;56(9):828–40.

    CAS  Google Scholar 

  41. Hu L, He K, Chen G, Zeng G, Chen A, Huang Z, Shi J, Peng M, Huang T. Enhanced removal performance for methylene blue by kaolin with graphene oxide modification. J Taiwan Inst Chem Eng. 2018; 1–9.

  42. Hu Y, Zhang Y, Hu Y, Chu C-Y, Lin J, Gao S, et al. Application of wasted oolong tea as a biosorbent for the adsorption of methylene blue. J Chem. 2019;2019:1–10.

  43. Jaseela PK, Garvasis J, Joseph A. Selective adsorption of methylene blue (MB) dye from aqueous mixture of MB and methyl orange (MO) using mesoporous titania (TiO2) – poly vinyl alcohol (PVA) nanocomposite. J Mol Liq. 2019;286:110908.

    CAS  Google Scholar 

  44. Jawad AH, Abdulhameed AS. Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: adsorption kinetic, isotherm and mechanism study. Surf Interfaces. 2020;18:100422.

  45. Kapadia K, Cheung F, Lee W, Thalappillil R, Florence FB, Kim J. Methylene blue causing serotonin syndrome following cystocele repair. Urol Case Rep. 2016;9:15–7.

  46. Karcher S, Kornmüller A, Jekel M. Anion exchange resins for removal of reactive dyes from textile wastewaters. Water Res. 2002;36(19):4717–24.

    CAS  Google Scholar 

  47. Kausar A, Iqbal M, Javed A, Aftab K, Nazli ZIH, Bhatti HN, et al. Dyes adsorption using clay and modified clay: a review. J Mol Liq. 2018;256:395–407.

    CAS  Google Scholar 

  48. Kiernan JA. Dyes and other colorants in microtechnique and biomedical research. Color Technol. 2006;122(1):1–21.

    CAS  Google Scholar 

  49. Kundu A, Mondal A. Kinetics, isotherm, and thermodynamic studies of methylene blue selective adsorption and photocatalysis of malachite green from aqueous solution using layered Na-intercalated Cu-doped Titania. Appl Clay Sci. 2019;183:105323.

    CAS  Google Scholar 

  50. Kuroda S, Nagaishi T, Kameyama M, Koido K, Seo Y, Dowaki K. Hydroxyl aluminium silicate clay for biohydrogen purification by pressure swing adsorption: physical properties, adsorption isotherm, multicomponent breakthrough curve modelling, and cycle simulation. Int J Hydrog Energy. 2018;43(34):16573–88.

    CAS  Google Scholar 

  51. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov. 2019;3(2):275–90.

  52. Liu S, Ding Y, Li P, Diao K, Tan X, Lei F, et al. Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N,N-dimethyl dehydroabietylamine oxide. Chem Eng J. 2014;248:135–44.

    CAS  Google Scholar 

  53. Liu C, Omer AM, Ouyang X-K. Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: isotherm and kinetic studies. Int J Biol Macromol. 2018;106:823–33.

    CAS  Google Scholar 

  54. Lopes TJ, Gonçalves OH, Barros RB, Capelli FCR, Machado RAF, Quadri MGN, et al. Adsorption of natural dyes on clay fixed on polymers. Braz Arch Biol Technol. 2005;48(spe):275–80.

    Google Scholar 

  55. Mahbub MKB, Begum HA. Effectiveness of carboxymethyl cellulose for the removal of methylene blue from aqueous solution. Dhaka Univ J Sci. 2013;61(2):193–8.

  56. Mallakpour S, Tabesh F. Tragacanth gum based hydrogel nanocomposites for the adsorption of methylene blue: comparison of linear and non-linear forms of different adsorption isotherm and kinetics models. Int J Biol Macromol. 2019;133:754–66.

    CAS  Google Scholar 

  57. Mirakbari SM. Methylene blue unresponsive methemoglobinemia.Indian J Crit Care Med. 2014;18(7):483–4.

  58. Moazzen M, Mousavi Khaneghah A, Shariatifar N, Ahmadloo M, Eş I, Baghani AN, et al. Multi-walled carbon nanotubes modified with iron oxide and silver nanoparticles (MWCNT-Fe3O4/Ag) as a novel adsorbent for determining PAEs in carbonated soft drinks using magnetic SPE-GC/MS method. Arab J Chem. 2019;12(4):476–88.

    CAS  Google Scholar 

  59. Momina M, Shahadat M, Isamil S. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC Adv. 2018;8(43):24571–87.

    CAS  Google Scholar 

  60. Momina, Rafatullah M, Ismail S, Ahmad A. Optimization study for the desorption of methylene blue dye from clay based adsorbent coating. Water. 2019;11(6):1304.

    CAS  Google Scholar 

  61. Nagendrappa G. Organic synthesis using clay and clay-supported catalysts. Appl Clay Sci. 2011;53(2):106–38.

    CAS  Google Scholar 

  62. Peng Z, Guo Z, Chu W, Wei M. Facile synthesis of high-surface-area activated carbon from coal for supercapacitors and high CO2 sorption. RSC Adv. 2016;6(48):42019–28.

    CAS  Google Scholar 

  63. Pimneva L, Zagorskaya A. Modification of natural clays for use in the processes of sewage treatment. J Ecol Eng. 2019;20(8):12–7.

  64. Radoor S, Karayil J, Parameswaranpillai J, Siengchin S. Adsorption study of anionic dye, Eriochrome black T from aqueous medium using polyvinyl alcohol/starch/ZSM-5 zeolite membrane. J Polym Environ. 2020;28(10):2631–43.

    CAS  Google Scholar 

  65. Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater. 2010;177(1–3):70–80.

    CAS  Google Scholar 

  66. Ramadass K, Singh G, Lakhi KS, Benzigar MR, Yang JH, Kim S, et al. Halloysite nanotubes: novel and eco-friendly adsorbents for high-pressure CO2 capture. Microporous Mesoporous Mater. 2019;277:229–36.

    CAS  Google Scholar 

  67. Ramesh S, Punithamoorthy K. Synthesis, characterization and gas permeability properties of a novel nanocomposite based on poly(ethylene-co-vinyl acetate)/polyurethane acrylate/clay. J Mater Res Technol. 2019;8(5):4173–81.

  68. Rasalingam S, Peng R, Koodali RT. Removal of hazardous pollutants from wastewaters: applications of TiO2-SiO2Mixed oxide materials. J Nanomater. 2014;2014:1–42.

    Google Scholar 

  69. Rida K, Bouraoui S, Hadnine S. Adsorption of methylene blue from aqueous solution by kaolin and zeolite. Applied Clay Science. 2013;83–84:99–105.

    Google Scholar 

  70. Rizzi V, Prasetyanto EA, Chen P, Gubitosa J, Fini P, Agostiano A, et al. Amino grafted MCM-41 as highly efficient and reversible ecofriendly adsorbent material for the direct blue removal from wastewater. J Mol Liq. 2019;273:435–46.

    CAS  Google Scholar 

  71. Roghanizad A, Abdolmaleki MK, Ghoreishi SM, Dinari M. One-pot synthesis of functionalized mesoporous fibrous silica nanospheres for dye adsorption: isotherm, kinetic, and thermodynamic studies. J Mol Liq. 2020;300:112367.

    CAS  Google Scholar 

  72. Sabarish R, Unnikrishnan G. Synthesis, characterization and catalytic activity of hierarchical ZSM-5 templated by carboxymethyl cellulose. Powder Technol. 2017;320:412–9.

    CAS  Google Scholar 

  73. Sabarish R, Unnikrishnan G. Novel biopolymer templated hierarchical silicalite-1 as an adsorbent for the removal of rhodamine B. J Mol Liq. 2018a;272:919–29.

    CAS  Google Scholar 

  74. Sabarish R, Unnikrishnan G. Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr Polym. 2018b;199:129–40.

    CAS  Google Scholar 

  75. Sabarish R, Unnikrishnan G. PVA/PDADMAC/ZSM-5 zeolite hybrid matrix membranes for dye adsorption: fabrication, characterization, adsorption, kinetics and antimicrobial properties. J Environ Chem Eng. 2018c;6(4):3860–73.

  76. Sabarish R, Unnikrishnan G. Synthesis, characterization and evaluations of micro/mesoporous ZSM-5 zeolite using starch as bio template. SN Appl Sci. 2019;1(9).

  77. Sabarish R, Unnikrishnan G. A novel anionic surfactant as template for the development of hierarchical ZSM-5 zeolite and its catalytic performance. J Porous Mater. 2020;27(3):691–700.

    CAS  Google Scholar 

  78. Sabir A, Falath W, Jacob KI, Shafiq M, Gull N, Islam A, et al. Integrally skinned nano-cellular crosslinked asymmetric thin films infused with PEO-PPO-PEO block copolymer/ZnO-NPs for desalination using sea salt. Mater Chem Phys. 2016;183:595–605.

    CAS  Google Scholar 

  79. Saharudin MS, Atif R, Shyha I, Inam F. The degradation of mechanical properties in halloysite nanoclay–polyester nanocomposites exposed to diluted methanol. Journal of Composite Materials. 2016;51(11):1653–64.

    Google Scholar 

  80. Salima A, Ounissa K-S, Lynda M, Mohamed B. Cationic dye (MB) removal using polymer inclusion membrane (PIMs). Procedia Eng. 2012;33:38–46.

  81. Samarghandi MR, Dargahi A, Shabanloo A, Nasab HZ, Vaziri Y, Ansari A. Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. Arab J Chem. 2020a;13(8):6847–64.

    CAS  Google Scholar 

  82. Samarghandi MR, Dargahi A, Zolghadr Nasab H, Ghahramani E, Salehi S. Degradation of azo dye acid red 14 (AR14) from aqueous solution using H2O2/nZVI and S2O82–/nZVI processes in the presence of UV irradiation. Water Environ Res. 2020b;92(8):1173–83.

    CAS  Google Scholar 

  83. Somsesta N, Sricharoenchaikul V, Aht-Ong D. Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Mater Chem Phys. 2020;240:122221.

    CAS  Google Scholar 

  84. Srinivasan R. Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Adv Mater Sci Eng. 2011;2011:1–17.

    Google Scholar 

  85. Thirumoorthy K, Krishna SK. Preparation and characterization of ball clay-manganese dioxide Nanocomposites. Asian J Chem. 2019;31(1):83–8.

    CAS  Google Scholar 

  86. Ting Z, Zhiyuan P. Bio-adsorbent from Carboxymethyl cellulose and tannin for dye adsorption. J Macromol Sci B. 2018;57(3):177–86.

    Google Scholar 

  87. Uddin MK. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J. 2017;308:438–62.

    CAS  Google Scholar 

  88. Wang S, Li H, Xie S, Liu S, Xu L. Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment. Chemosphere. 2006;65(1):82–7.

    CAS  Google Scholar 

  89. Wang Q, Ju J, Tan Y, Hao L, Ma Y, Wu Y, et al. Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue. Carbohydr Polym. 2019a;205:125–34.

    CAS  Google Scholar 

  90. Wang X, Mu B, Wang W, Wang Q, Wang A. A comparative study on color properties of different clay minerals/BiVO4 hybrid pigments with excellent thermal stability. Appl Clay Sci. 2019b;181:105221.

    CAS  Google Scholar 

  91. Wei W, Abdullayev E, Hollister A, Mills D, Lvov YM. Clay nanotube/poly(methyl methacrylate) bone cement composites with sustained antibiotic release. Macromol Mater Eng. 2012;297(7):645–53.

    CAS  Google Scholar 

  92. Wong S, Yac'cob NAN, Ngadi N, Hassan O, Inuwa IM. From pollutant to solution of wastewater pollution: synthesis of activated carbon from textile sludge for dye adsorption. Chin J Chem Eng. 2018;26(4):870–8.

    CAS  Google Scholar 

  93. Xue Y, Xiang P, Wang H, Jiang Y, Long Y, Lian H, et al. Mechanistic insights into selective adsorption and separation of multi-component anionic dyes using magnetic zeolite imidazolate framework-67 composites. J Mol Liq. 2019;296:111990.

    CAS  Google Scholar 

  94. Yegane Badi M, Vosoughi M, Sadeghi H, Mokhtari SA, Mehralipour J. Ultrasonic-assisted H2O2/TiO2 process in catechol degradation: kinetic, synergistic and optimisation via response surface methodology. Int J Environ Anal Chem. 2020:1–14.

  95. Yin X, Wang L, Li S, He G, Yang Z. Effects of surface modification of halloysite nanotubes on the morphology and the thermal and rheological properties of polypropylene/halloysite composites. J Polym Eng. 2018;38(2):119–27.

    CAS  Google Scholar 

  96. Yousefzadeh S, Ahmadi E, Gholami M, Ghaffari HR, Azari A, Ansari M, et al. A comparative study of anaerobic fixed film baffled reactor and up-flow anaerobic fixed film fixed bed reactor for biological removal of diethyl phthalate from wastewater: a performance, kinetic, biogas, and metabolic pathway study. Biotechnol Biofuels. 2017;10(1):139.

  97. Yu J-X, Chi RA, Guo J, Zhang YF, Xu ZG, Xiao CQ. Desorption and photodegradation of methylene blue from modified sugarcane bagasse surface by acid TiO2 hydrosol. Appl Surf Sci. 2012;258(8):4085–90.

    CAS  Google Scholar 

  98. Zhang T, Oyama T, Aoshima A, Hidaka H, Zhao J, Serpone N. Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J Photochem Photobiol A Chem. 2001;140(2):163–72.

    CAS  Google Scholar 

  99. Zhu T, Tao Z, Jia L, Luo YF, Xu J, Chen RH, et al. Multifunctional nanocomposite based on halloysite nanotubes for efficient luminescent bioimaging and magnetic resonance imaging. Int J Nanomedicine. 2016;11:4765–76.

    Google Scholar 

  100. Zhu J, Li Q, Che Y, Liu X, Dong C, Chen X, et al. Effect of Na2CO3 on the microstructure and macroscopic properties and mechanism analysis of PVA/CMC composite film. Polymers. 2020;12(2).

Download references

Acknowledgements

The authors are grateful to the Centre of Innovation in Design and Engineering for Manufacturing (CoI- DEM), KMUTNB, Thailand for providing the necessary research facilities for this work. The work was financed by the King Mongkut’s University of Technology North Bangkok (KMUTNB), Thailand and grant funded the Post-Doctoral (KMUTNB-63-Post-03 to SR) and (Grant No. KMUTNB-64-KNOW-001, KMUTNB-BasicR-64-16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sabarish Radoor or Suchart Siengchin.

Ethics declarations

Conflict of interest

The authors don’t have any conflicts of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radoor, S., Karayil, J., Parameswaranpillai, J. et al. Adsorption of methylene blue dye from aqueous solution by a novel PVA/CMC/halloysite nanoclay bio composite: Characterization, kinetics, isotherm and antibacterial properties. J Environ Health Sci Engineer 18, 1311–1327 (2020). https://doi.org/10.1007/s40201-020-00549-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00549-x

Keywords

Navigation