Skip to main content
Log in

LED Exposure Modulates the Biosynthesis of Silver Nanoparticles from Root Tuber Extract of Chlorophytum borivilianum and their Phytotoxicty

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study reports an efficient phyto-mediated and photo-catalyzed synthesis of silver nanoparticles (AgNPs) from root tuber extract of Chlorophytum borivilianum and demonstrates its phytotoxicity during seedling growth of Peltophorum pterocarpum. A time course analysis of the appearance of SPR peak during incubation of reaction mixture under the exposure of various light treatments suggested the influence of light spectral quality on the biosynthesis of AgNPs. Irradiation of reaction mixture with blue LEDs (BL) induced the rapid synthesis of spherical particles smaller in size compared to other treatments. The reaction mixture optimized for the synthesis of AgNPs remains same for all the exposure conditions. FTIR spectra indicated the presence of steroidal saponins and their influence in bioreduction and capping of biosynthesized AgNPs. A bioreduction mechanism insensitive to the variations in spectral quality was proposed suggesting borivilianoside H, a steroidal saponin, as the bioreductant. The toxic impact of AgNPs was more pronounced with the particles synthesized under BL exposure particularly at rooting stage. The findings suggest the influence of LED lighting not only on the biosynthesis of AgNPs but also on its phytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. L. Ouay and F. Stellacci (2015). Nano Today10, 339–354.

    Article  CAS  Google Scholar 

  2. S.H. Lee and B.H. Jun (2019). Int. J. Mol. Sci.20, 865.

    Article  PubMed Central  CAS  Google Scholar 

  3. H. Quan, X. Peng, X. Han, J. Ren, L. Sun, and Z. Fu (2013). J. Env. Sci. 25: 1947-1955.

    Article  CAS  Google Scholar 

  4. M. K. Sarmast and H. Salehi (2016). Mol. Biotechnol. 58: 441-449.

    Article  PubMed  CAS  Google Scholar 

  5. S. Wagi and A. Ahmed (2019) Green Process Synth. 8: 885-894.

    Article  CAS  Google Scholar 

  6. X. Li, H. Xu, ZS. Chen, and G. Chen (2011). J. Nanomater.Article ID 270974.

  7. E. Vélez, G. Campillo, G. Morales, C. Hincapié, J. Osorio, and O. Arnache (2018). J. Nanomater. Article ID 7215210.

  8. P. Velusamy, J. Das, R. Pachaiappan, B. Vaseeharan, and K. Pandian (2015). Ind. Crop Prod.66, 103-109.

    Article  CAS  Google Scholar 

  9. J. J. Antony, M. Nivedheetha, D. Siva, G. Pradeepha, P. Kokilavani, S. Kalaiselvi, and S. Achiraman (2013). Colloid Surf. B109, 20-24.

    Article  CAS  Google Scholar 

  10. N. Saha, P. Trivedi, and S. Dutta Gupta (2016). J. Cluster Sci. 27(6), 1893-1912.

    Article  CAS  Google Scholar 

  11. N. Saha and S. Dutta Gupta (2017). J. Hazard. Mater.330, 18–28.

    Article  PubMed  CAS  Google Scholar 

  12. S. Jain and M.S. Mehata (2017). Sci. Rep.7, 15867.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. S. Pirtarighat, M. Ghannadnia, and S. Baghshahi (2019). J. Nanostructure Chem.9, 1–9.

    Article  CAS  Google Scholar 

  14. V. Sharma, S. Kaushik, P. Pandit, D. Dhull, J. P. Yadav, and S. Kaushik (2019). Appl. Microbiol. Biotechnol. 103, 881–891.

    Article  PubMed  CAS  Google Scholar 

  15. L. S. B. Upadhyay and N. Verma (2015). Anal. Lett. 48, 2676–2692.

    Article  CAS  Google Scholar 

  16. P. J. Rivero, J. Goicoechea, A. Urrutia, et al., (2013). Nanoscale Res. Lett.8, 101–109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. J. Zeng, Y. Zheng, M. Rycenga et al., (2010). J. Am. Chem. Soc.132, 8552–8553.

    Article  PubMed  CAS  Google Scholar 

  18. S.S. Mansouri and S. Ghader (2009). Arab J. Chem. 2, 47-53.

    Article  CAS  Google Scholar 

  19. C. Krishnaraj, E. G. Jagan, S. Rajasekar, P. Selvakumar, P. T. Kalaichelvan, and N. Mohan (2010). Colloids Surf. B. 76, 50-56.

    Article  CAS  Google Scholar 

  20. G. Kevin, J. Stamplecoskie, and C. Scaiano (2010). J. Am. Chem. Soc.132, 1825–1827.

    Article  CAS  Google Scholar 

  21. F.A. Carey and R.J. Sundberg (2007). Photochemistry. In: Advanced Organic Chemistry, Springer US, pp. 1073-1153.

    Chapter  Google Scholar 

  22. N. Sritong, S. Chumsook, and Sineenat (2018). Artif. Cells Nanomed. Biotechnol.46 S955–S963.

    Article  CAS  Google Scholar 

  23. B.Tang, L. Sun, J. Li et al., (2015). Chem. Eng. J.260, 99–106.

    Article  CAS  Google Scholar 

  24. B. Kumar, Y. Angulo, K. Smita, L, and A. Cumbal (2016). Particuology 24, 123-128.

    Article  CAS  Google Scholar 

  25. J.H. Lee, J.M. Lim, P. Velmurugan, Y.J. Park, K.S. Bang (2016). J. Photochem. Photobiol. B.162, 93-99.

    Article  PubMed  CAS  Google Scholar 

  26. S. Dutta Gupta and A. Agarwal (2017). In: Light Emitting Diodes for Agriculture: Smart Lighting, Ed. S. Dutta Gupta, pp. 1–25, Springer Nature, Singapore.

  27. V. Kumar, D.K. Singh, S. Mohan, and S.H. Hasan (2016). J. Photochem. Photobiol. B155, 39–50.

    Article  PubMed  CAS  Google Scholar 

  28. N. Kaushik (2015). Phytochem. Rev. 4, 191-196.

    Article  CAS  Google Scholar 

  29. M. Kumar, P. Meena, S. Verma, M. Kumar, and A. Kumar (2010). Asian Pac. J. Cancer Prev. 11, 327-34.

    PubMed  Google Scholar 

  30. S. Dutta Gupta, N. Saha, A. Agarwal, and V. Venkatesh (2020). Ecotoxicol.29, 75-85.

    Article  CAS  Google Scholar 

  31. C. Krishnaraj, R Ramachandran, K Mohan, and P.T. Kalaichelvan (2012). Spectrochim. Acta A.93, 95-99.

    Article  CAS  Google Scholar 

  32. R. Banasiuk, J.E. Frackowiak, M. Krychowiak, M. Matuszewska, A. Kawiak, M. Ziabka, Z. Lendzion-Bielun, M. Narajczyk, and A. Krolicka (2016). Int. J. Nanomedicine. 11, 315–324.

    CAS  Google Scholar 

  33. C. Krishnaraj, E. G. Jagan, S. Rajasekar, P. Selvakumar, P. T. Kalaichelvan, and N. Mohan (2010). Colloids Surf. B76, 50-56.

    Article  CAS  Google Scholar 

  34. N.L. Gavade, A.N. Kadam, M.B. Suwarnkar, V.P. Ghodake, and K.M. Garadkar, (2015). Spectrochim Acta A: Molecular and Biomolecular Spectroscopy 136, 953-960.

    Article  CAS  Google Scholar 

  35. H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, and S.P. D. Misra (2009). Colloids Surf. A. 339, 134-139.

    Article  CAS  Google Scholar 

  36. S.P. Dubey, M. Lahtinen, and M. Sillanpää (2010). Process Biochem. 45,1065-1071.

    Article  CAS  Google Scholar 

  37. L. Mulfinger, S.D. Solomon, M. Bahadory et al., (2007). J. Chem. Educ. 84, 322-325.

    Article  Google Scholar 

  38. S. Raja, V. Ramesh, and V. Thivaharan (2017). Ara. J. Chem.10, 253-261.

    Article  CAS  Google Scholar 

  39. V. Gopinath, D. Mubarak Ali, S. Priyadarshini, N.M. Priyadharshini, N. Thajuddi, and P. Velusamy (2012). Colloids. Surf. B. Biointerfaces96, 69-74.

    Article  PubMed  CAS  Google Scholar 

  40. N. Giribabu, K.E. Kumar, S.S. Rekha, S. Muniandy, and N. Salleh, BMC Comple. Alt. Med.14, 291.

  41. Y.Z. Wang and P. Li (2018). Plant Growth Regul. 84, 373-381.

    Article  CAS  Google Scholar 

  42. S. Dutta Gupta and P. Kohli (2019). Current Biotechnol.8, 127-137.

    Article  CAS  Google Scholar 

  43. J. Jung, S. Park, S. Hong, M.W. Ha, H.G. Park, Y. Park, H.J Lee, and Y. Park (2014). Carbohydr. Res. 386,57-61.

    Article  PubMed  CAS  Google Scholar 

  44. S. Budhani, N. P. Egbolouchi, Z. Arslan, H.Yu, and H. Deng (2019) J. Env. Sci. Health C. 37: 330-335.

    Article  CAS  Google Scholar 

  45. B. E. Millán-Chiu, M. D. Rodriguez-Torres, and A. M. Loske (2020). Nanotoxicology in Plants, In: J. K. Patra et al. (eds.), Springer Nature, Switzerland AG 2020.

  46. S. Dutta Gupta, A. Agarwal, and S. Pradhan (2018). Eco. Safet. 161, 624-633.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dutta Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.D., Kohli, P. LED Exposure Modulates the Biosynthesis of Silver Nanoparticles from Root Tuber Extract of Chlorophytum borivilianum and their Phytotoxicty. J Clust Sci 32, 1325–1338 (2021). https://doi.org/10.1007/s10876-020-01899-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01899-0

Keywords

Navigation